

EMERGENCE OF SELF ORGANIZATION AND SEARCH FOR OPTIMAL
ENTERPRISE STRUCTURE: AI EVOLUTIONARY METHODS APPLIED

TO AGENT BASED PROCESS SIMULATION

Marco Remondino
Department of Computer Science

University of Turin
C.so Svizzera 185
10149 Turin, Italy

E-mail: remond@di.unito.it

KEYWORDS

simulation, model, intelligent agent, genetic algorithm,
classifier system, complex behaviour, process

ABSTRACT

Enterprise simulation allows what-if analysis and
helps in business process re-engineering. There are
mainly two approaches to simulation: process based,
which is strictly deterministic and generally used to
model well known parts of enterprises or
mechanical/electronic systems and agent based, which
allows to study the emergence of aggregate behaviour,
through the creation of models, known as artificial
societies. In order to simulate enterprises where the
environment and human factor are relevant, a hybrid
formalism is proposed: Agent Based Process
Simulation. Colonies of intelligent agents, modelled
using evolutionary methods derived from the AI field,
are put side by side with the representation of
processes, modelled as symbolic and deterministic
agents built using paradigms derived from
Propositional and Modal Logic. The main goal of this
work is to study how this approach can allow the
emergence of aggregate behaviour and, by using some
performance parameters, can help to find the optimal
organization for an enterprise. In particular, agents
built using Genetic Algorithms and Classifier Systems
can evolve to find local maximum of functions
representing situations whose rules are not entirely
known a priori, such as the ones behind the optimal
organization of an enterprise.

INTRODUCTION

In (Ostrom 1988), simulation is described as a third
way to represent social models, being a powerful
alternative to other two symbol systems: the verbal
argumentation and the mathematical one. The former,
which uses natural language, is a non computable way
of modelling though a highly descriptive one; in the

latter, while everything can be done with equations,
the complexity of differential systems rises
exponentially as the complexity of behaviour grows,
so that describing complex individual behaviour with
equations often becomes an intractable task.
Simulation has some advantages over the other two: it
can easily be run on a computer, through a program or
a particular tool; besides it has a highly descriptive
power, since it is usually built using a high level
computer language, and, with few efforts, can even
represent non-linear relationships, which are tough
problems for the mathematical approach. According to
(Gilbert, Terna 1999):

“The logic of developing models using computer
simulation is not very different from the logic used for
the more familiar statistical models. In either case,
there is some phenomenon that the researchers want
to understand better, that is the target, and so a model
is built, through a theoretically motivated process of
abstraction. The model can be a set of mathematical
equations, a statistical equation, such as a regression
equation, or a computer program. The behaviour of
the model is then observed, and compared with
observations of the real world; this is used as evidence
in favour of the validity of the model or its rejection”

Computer programs can be used to model either
quantitative theories or qualitative ones; simulation
has been successfully applied to many fields, and in
particular to social sciences, where it allows to verify
theories and create virtual societies. In particular, the
simulation of an enterprise can give very good results,
regarding case studies, what-if analysis and business
process re-engineering. It is possible to identify two
different approaches to computer simulation, both of
which lead to the creation of a computational model of
a social or complex system, starting from a very
different point: Process Simulation and Agent Based
Simulation. Both of them can be used to model
enterprises or firms, but with some fundamental
differences, which will be discussed in detail. Agent
Based Modeling is the most interesting and advanced
approach for simulating a complex system: in a social
context, the single parts and the whole are often very

hard to describe in detail. For this reason, process
simulation is not the ideal tool to model these complex
environments; besides, there are agent based
formalisms which allow to study the emergency of
social behaviour with the creation and study of
models, known as artificial societies. Thanks to the
ever increasing computational power, it's been
possible to use such models to create software, based
on intelligent agents, which aggregate behaviour is
complex and difficult to predict, and can be used in
open and distributed systems. A software agent can be
described as a flexible system, capable of dynamic,
autonomous actions, in order to meet its design
objectives, that is situated in some environment. The
main features for a software agent are: situatedness,
that is ability to perform actions according to a
particular input received from outside, which can, in
turn, change the environment itself; autonomy in
performing actions, without intervention of humans;
flexibility and adaptability. Some particular agents can
also be proactive, which means they are goal-directed,
and social, in the way they can interact with other
artificial agents, robots, and humans. Such an
intelligent agent can be referred to as a Belief-Desire-
Intention (BDI) one. There are many agent based
paradigms that can be applied to computer simulation:

• Symbolic: highly structured agents, described
through expressions of Propositional and Modal
Logic. This is perfect when there is a single agent,
which must interact with the environment, but it's not
versatile when used to simulate big communities
• Sub-symbolic: simple agents, which can be
described through metaphors. A multi-agent context of
this kind allows the emergency of complex behaviour
and self-organization. Intelligent behaviour is a
product of the interaction among agents and
environment, and of the interaction among many
simple behaviours. It can be really hard to describe the
real world under every aspect: some fundamental
macro-actions can thus be defined on single agents,
which allow cooperation with the environment and
with other agents. The concept of Multi Agent System
for social simulations is thus introduced: the single
agents have a very simple structure. Only few details
and actions are described for the entities: the
behaviour of the whole system is a consequence of
those of the single agents, but it's not necessarily the
sum of them. This can bring to unpredictable results,
when the simulated system is studied.
• Hybrid Architectures: at the lower levels, we find
reactive agents, like the ones described above, while at
the upper levels there are more complex and structured
agents. In this way, we can combine reactive
capabilities with planning.

The approach proposed in this work can be considered
as a hybrid architecture, since it uses symbolic agents
as process based blocks, and sub-symbolic agents to
model those parts of an enterprise which are not fully
known, part of the environment, or even the human
beings involved in the organization.

SIMULATION: TWO DIFFERENT
APPROACHES

Both process simulation and agent based simulation
are powerful approaches for creating models of
enterprises and complex systems, but they also have
some flaws. In order to overcome the limits of both the
simulation approaches, the possibility of a hybrid
methodology is studied in (Remondino, 2003). In the
present work I’ll concentrate the discussion on
enterprise simulation and I’ll discuss how intelligent
agents, based on AI paradigms, in particular genetic
algorithms and classifier systems, can show an
emergent aggregate behaviour when put side by side
with formal and deterministic processes. While deeply
describing both the approaches is beyond the purpose
of this paper, I’ll analyze the main differences among
them, which will lead to the hybrid formalism that I’m
studying. Usually, process simulation is used to model
a very well structured and known situation, in order to
perform a what-if analysis: it’s used to create models
of parts of enterprises or mechanical/electronic
systems. Its greatest advantage is that it starts from a
basic scheme, often derived from existent documents,
through which it becomes very easy to bring a real
situation into a process simulator: usually, a model to
be used for process simulation looks like a flow chart,
in which a token passes from one box to another one,
in a deterministic way, on the basis of the given rules.
This kind of approach is widely spread and allows to
deeply analyze a part of a whole, studying the
expected behaviour of a system, when some change is
operated. This is why process simulation is a great
support to decisions; the simulator can answer to many
questions and what-if problems, that would require big
efforts in the real environment; for example, a part of a
manufacturing plant can be simulated, by dividing it
into its main processes, and then it will be possible to
check what would happen on the final output if some
change occurs. According to (Helsgaun, 2000), the
process based approach, when building deterministic
simulations, is alternative to the event based and the
activity based ones. In the former the model consists
of a collection of events and each event models a state
change and is responsible for scheduling other events
that depend on that event. Each event has associated
an event time and some actions to be executed when
the event occurs. In the activity based approach the
model consists of a collection of activities: each
activity models some time-consuming action
performed by an entity. Each activity has associated a
starting condition, some actions to be executed when
the activity starts, the duration of the activity, and
some actions to be executed when the activity finishes.
In the process based approach the model consists of a
collection of processes. Each process models the life
cycle of an entity and is a sequence of logically related
activities ordered in time. Since processes resemble
objects in the real world, process based simulation is
often easy to understand; implementation, however, is
not always easy and execution efficiency may be poor
if the implementation is not done properly.

Unfortunately there isn't a universal modelling
language for process simulation and this often requires
deep translations for the models to be ported from one
tool to another. Another disadvantage is that, in order
to use this approach to simulate a process, this must be
very well known; if a part of the process is uncertain,
then it's impossible to validate a simulation as a model
of the real world to be represented. Besides, this
method is quite static, meaning that the relations
between the various parts involved in the model must
be described in deep and there is no possibility of
emergent behaviour and self-organization.
When the system to be simulated has a complex
aggregate behaviour, not easy to describe just studying
and modelling the single entities, agent based
simulation is the only usable approach. In complex
systems the sum of the parts is often not enough to
describe the whole, and usually from the interaction of
many simple entities a complex behaviour emerges.
So, if we want to model an enterprise in which also the
human factor is present, or we want to consider also
the influence of the environment, it will be impossible
to do that with a process based approach, thus leaving
agent based simulation as the only feasible method.
While in process simulation the stress is on the
function of the single parts, that are deeply modelled
as resembling the reality, in agent based simulation the
most important side is interaction among entities,
which creates the aggregate behaviour. The single
agents can even be very simple, with few rules and
directives. For example, an artificial stock market can
be simulated by creating some different types of
intelligent agents, which follow inner rules; some of
them can simply act randomly, while others will
“study” the trend before acting. Some of them, on the
contrary, could use advanced techniques, such as stop
loss. By observing the general trend of an artificial
stock market created with these rules, one can be
amazed, by seeing that it resembles in many ways a
real one. On the other side, agents can be modelled
with inner reasoning and learning capabilities, for
example using neural networks, genetic algorithms or
classifier systems, which create an evolutionary
environment. Each agent has the capacity to reason on
the global effects of local actions, or even to create its
own forecasts on the actions that will be performed by
other agents. The agents built using this approach can
decide on which action to perform, according to the
stimuli coming from the environment, and not only
according to their internal rules. According to
(Bonabeau, 2002), Agent Based Modeling has three
main benefits, over other approaches: it captures
emergent phenomena; it provides a natural description
of a system; and it is flexible.

AGENT BASED PROCESS SIMULATION

In (Bonabeau, 2002), we read that agent based
paradigm can be used successfully to model different
situations, like flows, markets, organizations, social
diffusion of phenomena; on the other hand, process

based approach has proved to be very useful for
detailed, but static and deterministic, machinery and
firm simulations. There are many intermediate
situations, though, in which neither process simulation
nor agent based approach can be applied with good
results. Besides, the works of evolutionary economics,
which use agents to represent industrial processes, also
have a vision which is opposite to the static
equilibrium, but are not meant to describe an
enterprise or a machinery in detail. In (Remondino
2003), some examples can be found, about situations
that can be described neither with pure process based
nor pure agent based approaches, but could be
modelled using a hybrid derived approach. Here I will
only present a general framework for Agent Based
Process simulations, shown in Figure 1. The market is
the environment for the enterprise; there are buyers,
i.e. the customers, and sellers, i.e. the suppliers. In a
traditional process based simulation, these actors
would be left out of the model, and the stress would be
put on the way the single enterprise works. On the
contrary, by using a pure agent based approach, we
could model all these entities, but we couldn’t model
the real structure of enterprises in detail.

Figure 1: A General Framework for ABPS

Combining the two approaches, we can have a detailed
model of the whole enterprise, with its production
units, sales, purchases and account departments,
logistics, warehouses and so on, modelled with a
process based approach, and the environment,
customers and sellers behaviour simulated using agent
based technology. Besides, also the workers of the
enterprise, i.e. persons in charge of machineries,
department directors, disposers and so on. For
example, sales and purchased departments could be
modelled as shown in Fig. 2 and 3, while both
customers and suppliers could be simple agents, acting
on the basis of a probability function, based on real

MARKET
(environment)

Suppl. Custom.

2 3 4 n1

Purchases Dept. Sales Dept.

Logistics – Warehouses

Account Dept.

O
rd

er
 /

C
ou

rie
r

O
rd

er
 /

C
ou

rie
r

data coming from market studies or simply randomly,
if we want to see how the modelled enterprise reacts to
whatever situation, even not realistic, coming from
outside.

Figure 2: Typical Process Based Model of Sales
Department

Figure 3:Typical Process Based Model of Purch
Department

The blocks constituting the departments are processes,
modelled in a deterministic way; their structure is
made of elementary building blocks that use
formalisms derived from Propositional or Modal
Logic.

SYMBOLIC AGENTS REPRESENTING
PROCESSES

Usually, since processes can be modelled as
deterministic flows, my proposal is to use both
Propositional and Modal Logic to describe their
structure. In (McCartney 2001) we read that:

“The basis for most current systems of formal logic is
Propositional Logic, also known as Propositional
Calculus or PC. PC describes truth-based rules using

the fundamental ideas of not and or, and derivations
of the concepts of and, implication, and strong
implication. A common extension to PC is predicate
logic. Predicate logic includes variables as well as
non-truth-based validity; or mapping variables into
values other than the Boolean true or false. Another
non-truth based logic is modal logic, which is based
on PC and introduces the concepts of necessity and
possibility. Modal logic is closely related to PC and
predicate logic, but is able to describe states that
would be indescribable in either of these languages”

In order to model a deterministic process, the
Propositional Logic could be enough, since it allows to
create truth tables of the single sub-processes. Modal
Logic allows having a more versatile environment,
allowing to determine if a proposition is true for sure,
false for sure or sometimes true and sometimes false
(i.e. it’s possible). In my framework I will only
suppose the use Propositional Logic, to model simple
processes: this allows to describe a process, create a
model of it and simplify the transition to programming
code required to port it into a working simulation. A
sub-block of a process produces output_1 if the logic
formula is True, or output_2 if it’s False; one of the
two outputs can be simply Void. In this way, a part of
a whole process can be like exemplified in Figure 4.

Figure 4: Propositional Logic Based Sub-block

Passing from this kind of representation to a
programming language is a very easy step, since all
the single boxes can be represented with if-then
functions. In this way a very complex deterministic
process can be modelled starting from very simple
building blocks. Modal Logic can even add concepts
of probability and necessity, so that a particular output
going out from a basic building block can always
occur or it’s possible that it occurs. In this case a
probability function can be given, representing the
views on the possible modal worlds, to specify how
often an output can be produced, given the initial rule.

Production
Department

Purchase
Analysis

Vender
Quotation

Purchase
Order

Inventory
Department

Vendor

Goods
Receiving

Quality
Control

2

N

A and B

A B

C

1

D

D or N

C and E

1

E

F

2

F

F 1

2

1

2

Product
Struct.

Cust.
Specs

Cost
Calcul.

Sales
Quot.

 Sales
Order

 Invent.
Dept

Sales
Dept.

Customer

 Ship.
Dept

This approach allows to model machineries and the
production units of an enterprise; the most difficult
part to simulate, but probably also the most interesting
for which regards the emergence of aggregate
behaviour and self organization, is the human factor,
e.g. the workers involved in the structure of the
enterprise. Finding the optimal organizational structure
of an enterprise is a very difficult task to accomplish,
though a critical subject. There exist some tools,
derived from AI studies, that allow embedding some
sort of reasoning and learning capabilities into
software agents. In particular, I will discuss about
Genetic Algorithms and Classifier Systems.

GENETIC ALGORITHMS AND CLASSIFIER
SYSTEMS

In some situations, effective results can be obtained
just by building simple agents, whose behaviour is
randomly determined or is built by applying fixed pre
defined reaction rules; this could be the case, for
instance, of Heatbugs, one of our canonical Swarm
demonstrations (www.swarm.org):

“It’s an example of how simple agents acting only on
local information can produce complex global
behaviour. As we read on Swarm main site, each
agent in this model is a heatbug. The world has a
spatial property, heat, which diffuses and evaporates
over time. In this picture, green dots represent
heatbugs, brighter red represents warmer spots of the
world. Each heatbug puts out a small amount of heat,
and also has a certain ideal temperature it wants to
be. The system itself is a simple time stepped model:
each time step, the heatbug looks moves to a nearby
spot that will make it happier and then puts out a bit of
heat. One heatbug by itself can't be warm enough, so
over time they tend to cluster together for warmth”

This is a useful approach when we wish to simulate
situations in which we give the rules of the
environment and we want to observe some emerging
aggregate behaviour arising from simple entities; of
course, the way the agents will act tends to be deeply
dependent on the choices made by the programmer. As
an alternative we can choose to create agents with the
ability to compute rules and strategies, and evolve
according to the environment in which they act; in
order to model them, we can use some methods
derived from the studies on artificial intelligence, such
as artificial neural networks and evolutionary
algorithms. While the former is a collection of
mathematical functions, trying to emulate nervous
systems in the human brain in order to create learning
through experience, the latter derives from
observations of biological evolution. Genetic
Algorithms derive directly from Darwin's theory of
evolution, often explained as "survival of the fittest":
individuals are modelled as strings of binary digits and
are the encode for the solution to some problem. The
first generation of individuals is often created

randomly, and then some fitness rules are given (i.e.
better solutions for a particular problem), in order to
select the fittest entities. The selected ones will
survive, while the others will be killed; during the next
step, a crossover between some of the fittest entities
occurs, thus creating new individuals, directly derived
from the best ones of the previous generation. Again,
the fitness check is operated, thus selecting the ones
that give better solutions to the given problem, and so
on. In order to insert a random variable in the genetic
paradigm, that’s something crucial in the real world, a
probability of mutation is given; this means that from
one generation to the next one, one or more bits of
some strings can change randomly. This creates totally
new individuals, thus not leaving us only with the
direct derivatives of the very first generation. Genetic
Algorithms have proven to be effective problem
solvers, especially for multi-parameter function
optimization, when a near optimum result is enough
and the real optimum is not needed. This suggests that
this kind of methodology is particularly suitable for
problems which are too complex, dynamic or noisy to
be treated with the analytical approach; on the
contrary, it’s not advisable to use Genetic Algorithms
when the result to be found is the exact optimum of a
function. The risk would be a convergence to some
results due to the similarity of most the individuals,
that would produce new ones that are identical to the
older ones; this can be avoided with a proper mutation,
that introduces in the entities something new, not
directly derived from the crossover and fitness
process. In this way, the convergence should mean
that in the part of the solution space we are exploring
there are no better strategies than the found one. It’s
crucial to choose the basic parameters, such as
crossover rate and mutation probability, in order to
achieve and keep track of optimal results and, at the
same time, explore a wide range of possible solutions.
Classifier Systems derive directly from Genetic
Algorithms, in the sense that they use strings of
characters to encode rules for conditions and
consequent actions to be performed. The system has a
collection of agents, called classifiers, that through
training evolve to work together and solve difficult,
open-ended problems. They were introduced in
(Holland 1976) and successfully applied, with some
variations from the initial specifics, to many different
situations. The goal is to map if-then rules to binary
strings, and then use techniques derived from the
studies about Genetic Algorithms to evolve them.
Depending on the results obtained by performing the
action corresponding to a given rule, this receives a
reward that can increase its fitness. In this way, the
rules which are not applicable to the context or not
useful (i.e. produce bad results) tend to loose fitness
and are eventually discarded, while the good ones live
and merge, producing new sets of rules. In (Kim,
1993) we find the concept of Organizational-learning
oriented Classifier System, extended to multi-agent
environments with introducing the concepts of
organizational learning. According to (Takadama
1999), in such environments agents should

cooperatively learn each other and solve a given
problem. The system solves a given problem with
multi-agents’ organizational learning, where the
problem cannot be solved simply by the sum of
individual learning of each agent.

EVOLUTIONARY METHODS APPLIED TO
ABPS

Agent Based Process Simulation is a way to model
deterministic structures, made up of single processes,
divided into Propositional Logic based building
blocks, and having them interact with agents
belonging to the sub-symbolic paradigms. This allows
to simulate situations in which not only the
deterministic structure, but also unpredictable
situations could arise, caused by the environment or
the human factor are important; we can think about
many different situations, that couldn’t be represented
by a pure process based approach, and would result
too difficult and inaccurate to be modelled just using
self organizing agents. For example, agents could be
part of the structure of an enterprise modelled with
process based approach; they could be regarded as
parts acting more like human beings than like
machines. We may think of a generic enterprise, in
which many sub-systems, i.e. units, can be described
with a process based approach. The interaction
between these basic subsystems, though, is usually
really complex, and generally involves a human or non
deterministic participation. This would be very
difficult, or even impossible to represent with a
process based model; but it would also be useless to
use a pure agent based approach, since many parts
could be only modelled with structured and Logic
based processes. That’s where we can use agent based
connections between the process based sub-systems.
These agents should be quite simple, but structured
ones, able to act starting from stimuli coming from the
environment (i.e. the output of a sub-system modelled
with process based approach), and to produce an
output, that will effect the way other sub-systems will
work. In a simulation built in this way, we can see
what happens if we change the way we manage the
warehouses, if we use more experienced employers or,
for example, if the workers are on a strike.
With the same approach, we can go down to a micro
level, for example by inserting agents into models of
the single machineries and business units. If we think
of a single, but very complex machinery, not all the
parts are strictly deterministic, in the sense that they
can be affected by some unforeseen influence coming
from the environment. By using a process based
approach, it is possible to model the machinery quite
deeply, but just in a deterministic, static situation,
which is the optimal environment, in which nothing
can change its way of working: we can simulate the
variation of the output by varying the input, or by
improving some part of the system. Or we can prove
the resistance and endurance of the machinery in
optimal conditions. Though, such a simulation, for its

nature, wouldn’t be able to consider any chaotic or
unforeseeable action, coming from outside, that could
compromise the machine operations (e.g. damages
caused by moist, fire, and so on). A representation of a
typical process based model of a machinery is given if
Figure 5.

Figure 5: Example of Structure for Process Based
Machinery

The model acts as a function which receives an input,
that is the independent variable (x), processes it and
produces a stochastic output, which is the dependent
variable (y). Though very powerful and easy to
validate, this is not always realistic. By considering
certain parts of the machinery as very simple agents
(Figure 5), it would be possible to create a more
realistic model of the object, that will be able to react
to the stimuli coming from the environment according
to certain rules, written in the single agents, that would
give the whole machinery a complex, and less
deterministic behaviour, just as the one it would have
in the real world. An example for this is given in
Figure 6, derived from the previous one, with the
insertion of some agents into the process based
structure.

Figure 6: The Same Structure, with the Addition of
Agents

Pr.
1

Pr.
2

Pr.
3

Pr.
4

Pr.
2b

Pr.
2a

IN
PU

T (x)

O
U

TPU
T (y)

Pr.
1

Pr.
2

Pr.
3

Pr.
4

Pr.
2b

Pr.
2a

IN
PU

T
(x)

AGENTS

OUTPUT (y)
+ ∆

Environment

Some agents are now put side by side with processes:
while the main flow remains unchanged, now there is
an influence coming from a hypothetical environment,
just like in the real world. The agents can react to the
stimuli coming from outside, which can be the rest of
the enterprise, another machine, or even the person
running the simulation. In this way, the model is not
strictly static anymore, in the sense that given an input
(x), same as before, the output is not a linear function
of just the independent variable, but also of all the
other ones that can be processed by the agents. The
output is not the same (y) as before, but (y) plus a
delta, which is caused by external, non deterministic
influences on the agents. Of course these agents must
act logically, on the basis of what could possibly
happen in the real world; a totally random acting agent
would be, obviously, useless. This kind of approach
allows to build models which are more realistic and
dynamic, as opposed to the static ones, where only the
deterministic flows are simulated. The greatest
difficulty, with this approach, is model validation,
using data from real experiments, because the
unexpected circumstances are difficult to reproduce
more than once. The validation could then go top-
down, in the sense that we observe certain data in the
reality and then try to reproduce the same situation in
the model, by using the agents in a piloted way. If the
same results occur, it is possible to calculate a standard
statistical error and validate the model for those
particular situations. We can then extrapolate the
results, and consider the model valid also for those
situations that can’t be controlled and created in the
real world. If the agents involved in the simulation, at
each level, are modelled using evolutionary methods
such as Genetic Algorithms and Classifier Systems,
we could achieve two main goals:

the agents simulating the environment could evolve
and self organize, thus creating a realistic situation.
Besides, if we use Classifier Systems to model the
agents, we could find the optimal rules for the
organization of a given enterprise, which is modelled
through deterministic processes. In order to do that,
we start from some basic parameters and performance
indicator, that will serve as the rules to determine the
fitness of the agents involved. The agents that will
produce the higher local results will survive and
merge, in order to create new generations derived from
them; after many simulated steps, we should be able to
find an optimal global organization of the simulated
enterprise (or business unit, or even machinery),
modelled using processes. For example, we can
choose to maximize the local output of a production
unit, given an input; the production unit will be
modelled with a process based approach, using
Propositional Logic formalisms for the building
blocks. The human beings involved in each production
unit are modelled as agents based on Classifier
Systems, as represented in Figure 7. In this framework
the single agents, which act as self evolving
connections between the processes within the various
business units, are modelled using Genetic
Algorithms. By using some simple reference
parameters, in particular the local output, that’s the
output produced by the single business units, it’s
possible to assign a fitness value to the agents. When
the simulation starts, a population of random agents is
created (random binary strings) for each unit. They
produce certain effects operating on the process based
parts of the production unit through their actions: we
could say that they operate the units in a random way.

Local Output (to maximize)

10011000
01111001
10000110
11110100
………….

A &B

GLOBAL OUTPUT

C &E

D v N F

G
LO

B
A

L
IN

PU
T

Figure 7: AI Evolutionary Methods Applied to ABPS

The agents that produce the best local output, given a
certain input, are saved and used for the crossover
among them. The resulting agents now compete
against the previous local optimum, and again only the
ones with better results are kept and crossed. The
mutation factor is also important, since it introduces a
variability that won’t be present with the simple
crossover between the subjects involved in the
simulation. After several simulation steps, all the
business units will have maximized the local output
(or at least the agents will have reached the best
possible result among the solution space observed),
and thus also the final output, that is the result of the
interaction between the various units, would be
maximized. At this point, by looking which kind of
agents survived to the selection and produced the
optimal results, we can understand what the best way
to operate each unit is.
Instead of using Genetic Algorithms inside the
production units, we could use Classifier Systems to
map the rules of the single processes; since the rules,
modelled with Propositional Logic, can be encoded as
if-then conditions, the Classifier Systems can map
them successfully and evolve them in order to find the
optimal organization of the process based structures.
Again, this could be based on very simple
performance indicators, like the local output, given a
local input or the time required to complete an
operation. Other constraints could be found for both
the approaches; for example, it’s possible that some of
the found structures are not applicable to the real
world. In this case, those should be discarded even if
their local performance is higher than others.

CONCLUSIONS AND FUTURE DIRECTIONS

Evolutionary Methods derived from the studies in AI
fields have proven to be effective problem solvers,
particularly for situations where a near optimum result
is enough and the real optimum is not needed. This
suggests that they can be successfully applied to those
situations in which the traditional approaches (e.g.
mathematical ones) are inapplicable, since the system
is too complex, dynamic or fuzzy. Enterprise
simulation, done through the proposed Agent Based
Process approach, can be an application field for
Genetic Algorithms and Classifier Systems; here an
enterprise or a part of it is split into a set of processes,
made of basic building blocks, each of one modelled
as a very simple rule of Propositional Logic. These are
put side by side with reactive and evolving agents, in
order to find an optimal structure for the modelled
enterprise through self organization. The agents are
evolved on the basis of a fitness function, representing
some core performance indicator (e.g. the local output
of the single production unit, the time used for the
single process and so on). There are at least two main
configurations for the proposed approach: the first one
uses Genetic Algorithms for the agents operating
every business unit in the simulation; the second one
employs Classifier Systems to optimize the single

processes, by mapping the Propositional Logic rules
and making them evolve. In the future a working
example of both the approaches will be created and
some practical results will follow, showing that
evolutionary methods can be a great help for decision
making and business process reengineering. A meta-
model for Agent Based Process Simulation is also in
the works, to be considered as the prototype for all the
models built in this way, showing which parts of a
generic enterprise can be modelled using Logic based
deterministic processes, and which require the use of
intelligent learning agents.

REFERENCES

Bahrami, A., Sadowski D. and Bahrami S. 1998. “Enterprise

architecture for business process simulation”, Proceedings
of the 1998 Winter Simulation Conference

Bonabeau, E. 2002. “Agent-based modeling: Methods and
techniques for simulating human systems”, PNAS 99
Suppl. 3: 7280-7287.

Gilbert, N. and Troiztsch, K.G. 1999. “Simulation for the
Social Scientist”, Open University Press

Gilbert, N. and Terna, P. 2000. “How to build and use agent-
based models in social science”, Mind & Society 1, 57-72

Helsgaun, K.2000. "Discrete Event Simulation in Java",
Writings on Computer Science, Roskilde University

Holland, J.H.1976. “Adaptation”, In R. Rosen and F. M.
Snell, editors “Progress in theoretical biology”, New York:
Plenum

Kim, D. 1993. “The Link between individual and
organizational learning”, Sloan Management Review, pp.
37 50.

McCartney, R. 2001. “A Short Introduction to Modal
Logic”, UNCG CSC 656, Spring

Remondino, M. 2003. “Agent Based Process Simulation and
Metaphors Based Approach for Enterprise and Social
Modeling”, ABS 4 Proceedings, SCS Europ. Publish.
House

Takadama, K. et al. 1999. “Making Organizational Learning
Operational: Implication from Learning Classifier System”
in J.Comp. and Mathematical Organization Theory, Vol. 5,
No. 3, pp. 229-252.

Terna, P. 2002. “jVEFrame: a Virtual Enterprise Frame in
Swarm”, SwarmFest 2002 Conference, working paper

AUTHOR BIOGRAPHY

MARCO REMONDINO was born in Asti, Italy, and
studied Economics at the University of Turin, where
he obtained his Master Degree in March, 2001 with
110/110 cum Laude et Menzione and a Thesis in
Economical Dynamics. In the same year, he started
attending a PhD at the Computer Science Department
at the University of Turin, which will last till the end
of 2004. His main research interests are Computer
Simulation applied to Social Sciences, Enterprise
Modeling, Agent Based Simulation and Multi Agent
Systems. He has been part of the European team which
defined a Unified Language for Enterprise Modeling
(UEML). He is also participating to a University
project for creating a cluster of computers, to be used
for Social Simulation.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

