
From the electronic circuit to the simulation component :
an automatic component building process

Vincent Fischer, Laurent Gerbaud
Laboratoire d’Electrotechnique de Grenoble, CNRS UMR 5529 INPG/UJF

ENSIEG BP 46, 38402 Saint Martin d’Hères, France
vincent.fischer@leg.ensieg.inpg.fr, laurent.gerbaud@leg.ensieg.inpg.fr

KEYWORDS

ODE solving, matrix exponentials, constraint
optimisation

ABSTRACT

This paper proposes a process to obtain
automatically a simulation component dedicated
to optimisation purposes from the schema of an
electrical, electronic or power electronics circuit.
This component, which computation is based on
a specific matrix exponential calculation, has the
ability to give the gradients (for SQP
optimisation process), and offers short
computation time and low memory occupation.
After the introduction of the optimisation
component problematic, the specific use of the
matrix exponential for ODE solving is presented.
The computation of the matrix exponential is
discussed, then the complete ODE solving and
the gradients computation are detailed. After,
the component building process is explained.
The circuit is analysed in order to obtain its
equations as a state system, the calculation code
is then generated, and finally the packaging of
the component is done. In the last part, some
results are analysed in terms of accuracy and
computation time.

0. INTRODUCTION

This paper deals with the automatic building of the
model of an electronic or power electronics circuit,
and the integration of this model with its solving
algorithm into a Java component designed in an
optimisation aim. This component has to provide a
computation time as short as possible, with good
result accuracy, and the ability to give gradients (for
SQP optimisation process). In the paper, only linear
state equations are treated, as they are most of the
time encountered in the power electronics area. The
simulation of hybrid state systems is not taken into
account, but will be easily possible in the future, as
it is in fact composed of a series of linear state
systems, sequenced with continuity conditions on
the states.

1. THE AIM OF THE PAPER

The constrained sizing of an electrical device can
be achieved through an optimisation process, which
is based on a sizing model. Such a process is
characterised as shown in Fig. 1 :

Figure 1: the optimisation process

The outputs jC of this model are the values of the
sizing criteria. They may concern values of state
variables (mainly current in inductors and voltages
in capacitors) at a specific date, extrema, r.m.s. or
average values, etc… These criteria are calculated
from the inputs iP of the sizing model, mainly the
parameters of the device. These parameters are
inductances, capacitances, resistances, etc… The
sizing criteria may depend on the state variables X
of the application to size. In the context of the
sizing of a power electronic structure, a linearity
hypothesis is often possible for the state equation
which is defined by (1).

() () ()tuBtXAtX ⋅+⋅=& (1)

Here, t represents the time, and ()tu is the
expression of the state inputs (e.g.: the sources of
the electronic circuit). A , B , and ()tu depend

directly on the iP , the parameters of the circuit.
Furthermore, some optimisation algorithms are
based on gradient methods (e.g. VF13 [7]), which
need the partial derivatives of the sizing criteria

according to the model inputs, i.e.
i

j

P
C
∂
∂

. These

derivatives can be expressed with the partial

derivatives of the state variables,
()
iP
tX

∂
∂

.

Different approaches exist to obtain the states
values from the inputs iP [1] [2]. They are often

Sizing model
()niiP ,,1K=

()mjjC ,,1K=

()

()nii

mjj

P
C

,,1

,,1

K

K

=

=

∂

∂
Optimisation

algorithm

Possible
initialisation

based on numerical simulation using ODE solving
algorithms like Trapeze, Runge-Kutta, etc.
Obtaining the partial derivatives of the states can be
achieved through finite differences. These
numerical approaches lead to important
computation times, especially if the values of state
variables have to be estimated only at a specific
date. In the same way, if the sizing model has many
outputs depending on several inputs, the
computation of the gradient of the state variables
according to the model inputs may be very time
consuming and numerically sensitive.
Another approach can be considered. As electronic
circuit state systems are often linear ones, the ODE
solving based on matrix exponentials is a good way
to reduce the computation times, as shown below.

The aim of the paper is to propose a tool that
generates dedicated calculation components of
linear state equations, specifically in the case of
electrical circuits. Such a component allows
calculating the state variables at a given date,
without having to run a complete simulation. It also
calculates the partial derivatives of the state
variables according to the physical parameters of
the state equations (fig. 2), without the need of a
second evaluation, as the finite differences method
needs.

() () ()tButAXtX +=&
t

()niiP ,,1K=

()tX
()

()niiP
tX

,,1K=∂
∂

Figure 2: the calculation component

Computation time and memory occupation are as
low as possible during the use of this component.

2. THE MATRIX EXPONENTIAL FOR ODE SOLVING

As in the paper, the state equation is supposed to be
linear, its complete solution can be expressed by the
following expression [3] :

() () () () τττ duBeXetX
t tAAt ⋅⋅⋅+⋅= ∫ −

0
0 (2)

In order to value such an expression, the
exponential of the matrix A has to be defined.
Several algorithms can be used to estimate it [4]
 [5]. Some of these use the eigenvalues of A, but
they are limited for our purposes. In this paper, the
selected algorithms do not use such methods. They
are fast and require few memory space.
Two methods have been selected : the Taylor series
development and the Padé approximation. Both
may be used in our tool. There are slight differences
between the results obtained with each method, but
these differences are negligible. The use cases of
each method are determined by the state system
expression. For very large state systems, the Padé
approximation will be privileged, when for smaller
systems, the Taylor series will be used.

2.1. The Taylor Series Development

The first selected algorithm is based on the Taylor
Series Development of the exponential operator :

∑
+∞

=

=
0 !n

n
A

n
Ae (3)

Computing this infinite sum is obviously
impossible. An upper bound N must be chosen,
depending on the desired calculation accuracy ε .
To obtain the accuracy ε , the upper bound N
must satisfy to the following criteria [4]:

()
()

ε≤



















+
−















+
<

+

2
1

1
!1

0
1

N
AN

A N

 (4)

As long as the Frobenius norm (()AATrace T ⋅)
of the matrix A is smaller than 1, this algorithm
gives accurate results, but when the norm is greater
than 1, the accuracy is lost.
To compensate for that issue, the scaling and
squaring method is used. This method is based on
the following expression :

S

S
A

A ee
2

2










= (5)

S is chosen so that 1
2

<S

A . Then the exponential

of
S

A
2

 is computed, and finally the result is squared

S times. This algorithm gives very accurate results
for all kinds of matrixes, as long as they are well
conditioned.
The condition number of a matrix measures the
sensitivity of the solution of a system of linear
equations to errors in the data. It also indicates the
numerical disparity between the elements of the
matrix. The condition number is calculated as
shown in equation (6) :

()
MIN

MAX

S

S

V
V

ACond = (6)

where
MAXSV is the highest singular value of the

matrix, and
MINSV the smallest one.

When the condition number of a state system
matrix is too high, it generally comes from the fact
that two different modelling levels have been
mixed. For example, mixing the first order
modelling with the HF EMC modelling gives
components with very disparate numerical values
(the first order model will lead to components with
big numerical values, as the HF EMC model will
lead to very small numerical values). The models of

circuit must be homogeneous on the modelling
level. For example, to study the global functioning
of a system, the first order model will be used,
while the EMC will be studied with a specific HF
EMC model.

2.2. The Padé Approximation

The ()qp, Padé approximation is based on the
following expressions (7):

() ()
() ()∑

= −+
−+

=
p

i

i
qp A

ipiqp
piqpAN

0
, !!!

!!

() ()
() () ()∑

=

−
−+

−+
=

q

i

i
qp A

iqiqp
qiqpAD

0
, !!!

!

() [] ()[]ANADAR qpqpqp ,
1

,,
−=

(7)

It gives accurate results with reduced computation
time [6] as long as the norm of the matrix is small.
So, as for the Taylor series development, the
scaling and squaring technique has to be used. The
results are quite equivalent with the Taylor series
methods. There are slight differences in terms of
computation time or memory occupation, but it
depends on the matrix of which the exponential is
computed, and the differences are negligible.

2.3. Obtaining the complete solution of the state
equation

As the considered systems are power electronics
ones, the electrical sources are either constant or
sinusoidal.
As it will be detailed in the following part, equation
(1), may be derivated according to the input
parameters (e.g.: inductance, resistance, etc), giving
a new state equation where expression of u(t) may
be constant, sinusoidal, or the product of a
polynomial expression with a sinusoidal expression.
If () Utu = (e.g. a constant source), then :

() () [] UBAeAduBe Att tA ⋅−⋅=⋅⋅ −−−∫ 11

0
τττ (8)

This gives:

() () [] UBIeAXetX AtAt ⋅−+⋅= −10 (9)

For a sinusoidal source (e.g. () ()tsintu ω=), the
integral term of the solution becomes :

[] () ()[]
() ()[] B

tAsintcos
sincose

IA
At










ϕ++ϕ+
−ϕ+ϕ

−
−

ωωω
ω

ω
122 (10)

For a polynomial source, (e.g. () ∑
=

=
Ud

k

k
k tctu

0

where ud is the degree), the integral term is:

() () B
n

kAtekAc
ud

k

k

n

n
Atk

k∑ ∑
= =

−−




















+−

0 0

1

!
!! (11)

Finally, all the different solutions for every single
source have to be added to obtain the complete
solution of the state system:

() () () ()∑ ∫
=

−+⋅=
SN

i

t

i
tA

i
At dueBXetX

1
0

0 τττ (12)

where SN is the number of sources.

2.4. Obtaining the states partial derivatives

Obtaining the states partial derivatives can be
achieved by numerical methods such as finite
differences, which shall be avoided as these
methods use more computation time and memory.
Moreover, these methods are numerically very
sensitive to their adjustment parameters.
Another method giving the states partial derivatives
is based on a system symbolic recombination. In
this way, the system equation is:

() () ()tuBtXAtX ⋅+⋅=& (13)
The derivative of this equation according to any
input iP of the sizing model gives:

() () () () ()
iiiii P
tuBtu

P
B

P
tXAtX

P
A

P
tX

∂
∂
⋅+⋅

∂
∂

+
∂
∂
⋅+⋅

∂
∂

=
∂
∂ & (14)

A new system can be created by these two
equations:

()tuBXAX ~~~~~ ⋅+⋅=& (15)
where :

()
()
()














∂
∂=

iP
tX
tX

tX~ ,














∂
∂= A
P
A
A

A
i

0~
,















∂
∂= B
P
B
B

B
i

0~

and ()
()
()














∂
∂=

iP
tu
tu

tu~ .

This new equation system is linear, and can be
solved with the methods presented in this paper. In
order to obtain the gradients of the states, the state
equation has to be derivated according to every
input of the sizing model, e.g. the iP where

{ }DNi ,,1K= .To obtain the lowest computing
time, a new system will be created and solved for
each derivate calculated. A system containing all
the derivates could be created with the following
matrixes:

()

()
()

()






















∂
∂

∂
∂

=

DNP
tX

P
tX
tX

tX
M

1~
,

()

()0

0
~ 1























∂
∂

∂
∂

=

A
P
A

A
P
A
A

A

DN

OM ,

()

()0

0
~ 1























∂
∂

∂
∂

=

B
P
B

B
P
B
B

B

DN

OM and ()

()
()

()






















∂
∂

∂
∂

=

DNP
tu

P
tu
tu

tu
M

1~ .

With this system, only one solving is needed to
obtain all the derivatives of the states. But the
solving of this system needs the exponential of the
matrix A~ , of which the computation time
proportional to ()()3*1 nND + where n is the size
of A and DN the number of derivatives
computed. When the derivatives are calculated
separately from each other, the total computation
time is proportional to () DNn *2* 3 . Solving
several small systems requires less computation
time than solving one large system.

3. THE COMPONENT BUILDING

The process leading from the circuit schema to the
simulation component is divided in three distinct
parts, as shown in Fig. 3. First of all, the current
equations are obtained from the circuit scheme, and
the state system is extracted from the circuit
equations. The computation code is then generated.
Finally, the component is packaged.

Building of the netlist
(Schematic of PSpice)

Building of the State System

Packaging

Circuit

Netlist

Reduced state system

Generation of the Calculation code

Calculation code

Dedicated calculation component
Figure 3: the component building process

3.1. Expressing the state system

The circuit is described using Pspice Schematic.
From this tool, a netlist describing the circuit is
obtained and can be used by a builder which gives
the reduced state equation of the circuit.
This builder parses the PSpice netlist to extract the
node equations of the circuit. Form that, an

independent set of mesh equations is built and the
equations of each components are given [8]. The
modelling level used in a sizing process allows
having simple linear models for the components
(resistors, inductors, capacitors).
Having all the equations of the circuit, the reduced
state equations are obtained using symbolic
treatment implemented in Macsyma [9].
The time differentiated variables of a circuit are the
currents in its inductors and the voltages on its
capacitors. Thanks to the algebraic relations
between the voltages of the circuit (from the mesh
equations) and the currents in the circuit (from the
node equations), the state variable vector is only
made of a part of these variables.
In this way, the state equation is defined by
equation (1). The state variable vector X is made
with currents in inductors and the voltages on
capacitors. The input vector ()tu is made with the
circuit sources. Finally, the coefficients of the state
variables and the sources in each equation are
symbolically computed, defining the matrixes A
and B . So, the state system is symbolically
expressed.

3.2. Automatic building of the calculation code

With the expression of the state system, the model
calculation code can be generated automatically. In
this process, such a component calculates the state
variables at a given date, without having to run a
complete simulation. It can also calculate the partial
derivatives of the state variables according to the
physical parameters of the circuit (e.g. resistances,
inductances, capacitances, etc.) (see fig. 4).

Figure 4: Structure of a generated calculation component

The created calculation component is Java based,
but it uses some algorithms written in C (the matrix
exponential algorithm for example). The generated
Java code calls the C code during the calculation of
the model. First of all, the calculation code of the
state system matrixes (A , B , and ()tu) can be
generated without any particular difficulty, as their
expressions are ANSI-C compliant. The generation
of the calculation code of the partial derivatives of
the state system matrixes requires a symbolic
derivation treatment. In the paper, a Java based
lightweight derivation tool developed in our
laboratory (RAMA [11]), has been used.
Then the code using the calculation of the matrix
exponential and the calculation of the state system

State System
Formulation X

Matrix
Computation

State System
Formulation i

Solver

()tUBA ,,
()tX

()
iP
tX

∂
∂

iP

t

matrixes is generated. This code can calculate the
value of the state vector X at any date, without
simulating any transient state. Finally, the specific
code of the calculation component is generated.
This last code includes the definition of the inputs
and outputs of the component. It also includes the
default implementation of the simulation
component interface. This interface contains the
methods necessary to access to its inputs and
outputs (reading and writing their values, and
connecting an input to an output of another
component). It also contains two computation
methods. The first one launches the computation of
the outputs with the actual values of the inputs. The
second one launches the computation of the partial
derivatives of the outputs according to the specified
inputs. All of these methods are implemented
automatically. The code is then compiled.

3.3. Packaging the component

All the generated Java classes and the dynamic
library containing the C functions (matrix
exponential computation, matrix inversion, matrix
determinant, …) used by the Java code are included
in a Jar (Java ARchive) file containing a manifest
pointing to the main class of the component, which
is the class implementing the component interface.
During the loading of this class, all the other classes
(which are used by the component main class) are
loaded, as well as the dynamic libraries, which
contain the C code.
The component is ready to compute the model, or
to be connected with others components…

4. RESULTS

The results obtained with a static converter plugged
on an electronic circuit representing the RSIL filter
of a power electronics converter (fig. 5) is presented
to illustrate the approach. The results given by the
generated calculation component are compared with
numerical simulations, in terms of accuracy,
computation time and memory occupation.
Simulations have been made with Simplorer [10].

Figure 5: the electronic circuit

The generation of the component is done in less
than one minute, including the analysis of the

circuit, the generation of the state equation, the
generation of the computation code and the
packaging into a component.
The comparison is done for several frequencies of
the voltage source, to get a good representation of
the harmonic spectrum of the operating mode.
Although the whole simulation takes a little more
computation time with the matrix exponential
approach than with a numerical approach, the time
gain lies in the fact that each point of the simulation
can be obtained without the knowledge of the
others, whereas the numerical simulation needs the
knowledge of the past to obtain the next point. It
means that obtaining the states values at st 1= will
require at least thousands of calculated points with
numerical integration methods, whereas only one
resolution is needed with the matrix exponential
approach. As a consequence, the computation is far
faster and the memory occupation far lower with
the matrix exponential method than with the
numerical simulation. The accuracy is equivalent
with both methods, as shown in Fig. 6.

Figure 6: the results of the matrix exponential approach (up),

and the numerical simulation (down)
Moreover, the calculation component gives also the
gradients for optimisation processes.

5. CONCLUSION

In this paper we have presented a process which
builds automatically a Java based component
containing a model of an electronic circuit, and the
algorithms required for the computation of this
model. The component is automatically generated
from the schema of the circuit.
The computation of the model is based on a
methodology using symbolic treatments of the
models and matrix exponential to solve the ordinary
differential equations involved in the models of
electronic circuits. This method gives directly the
values of the states at a specific date and their
partial derivatives according to the circuit
parameters, for optimisation purposes. To the
contrary, numerical methods must start from the

origin and integrate the ODE step by step until they
reach the desired date. To obtain the partial
derivatives of the states with the finite differences,
another simulation must be computed for each input
of the model.
The presented methodology requires few
computing time and few memory occupation. The
states are obtained with a very good accuracy, as
well as the partial derivatives, to the contrary of the
derivatives obtained with finite differences, which
are numerically sensitive to the differentiation step,
and which may be unstable.
The purpose of this methodology based on matrix
exponentials is not the simulation of electrical
devices, as other tools can do it very well, but to
reduce the computing time while obtaining the
values of the states at a certain date and their partial
derivatives. This methodology shall reduce the
overall computing time of the optimisation of an
electrical device.

6. REFERENCES

[1] Kragh H., Blaabjerg F., Pedersen J.K., "An

advanced tool for optimised design of power
electronic circuits", proceeding of IEEE-
IAS'98, Saint Louis, Missouri, USA, October
12-15, 1998, pp 991 – 998

[2] Viarouge P., Tourkhani F., Kamwa I., Le-Huy
H., "Nonlinear optimization techniques for the
design of static converters", proceedings of the
IMACS-TC1'93, 4th international conference,
Association for Mathematics and Computers in
Simulation, Montreal, Canada, July 7-9, 1993,
pp 543 – 547

[3] J. D'Azzo, C. Houpis, "Linear Control System
Analysis and Design", 4th Ed., McGraw Hill
Book Co., 1995

[4] C. Moler, C. Van Loan, "Nineteen dubious
ways to compute the exponential of a matrix",
SIAM Review 1978, Vol. 20 No.4, pp 801 –
836

[5] W. Harris Jr, J. Fillmore, D. Smith, "Matrix
Exponentials – Another Approach", SIAM
Review 2001, Vol. 43 No 4, pp 694 – 706

[6] V. Fischer, L. Gerbaud, J. Bigeon, “Solving
ODE for optimisation: Specific use of the
matrix exponential approach”, OIPE 2002,
Lodtz, Poland

[7] VF13, http://www.cse.clrc.ac.uk/nag/hsl/
[8] C. Lechevalier, L. Gerbaud, J. Bigeon,

"Automatic design of discrete time-models of
static converter", Simulation in Industry, 8th
SCS-ESS’96 (Europeen Simulation
Symposium), Genoa, Italy, October 24-26,
1996, pp 475-479.

[9] L. Gerbaud, J. Bigeon, G. Champenois,
"Modular approach to describe
electromechanical systems. Using Macsyma to
generate global approach simulation software",

Conference record of the IEEE PESC'92
(Power Electronics Society Conference), june
29 - july 3, 1992, Toledo, Spain, pp 1189-1196

[10] Simplorer,
http://www.ansoft.com/products/em/simplorer/

[11] V. Fischer, L. Allain, “RAMA : a lightweight
rule-based tool for expressions analysis and
code generation”, ESS 2003, 26 – 29 October
2003, Delft, The Netherlands

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

