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ABSTRACT 
 
This paper proposes a process to obtain 
automatically a simulation component dedicated 
to optimisation purposes from the schema of an 
electrical, electronic or power electronics circuit. 
This component, which computation is based on 
a specific matrix exponential calculation, has the 
ability to give the gradients (for SQP 
optimisation process), and offers short 
computation time and low memory occupation. 
After the introduction of the optimisation 
component problematic, the specific use of the 
matrix exponential for ODE solving is presented. 
The computation of the matrix exponential is 
discussed, then the complete ODE solving and 
the gradients computation are detailed. After, 
the component building process is explained. 
The circuit is analysed in order to obtain its 
equations as a state system, the calculation code 
is then generated, and finally the packaging of 
the component is done. In the last part, some 
results are analysed in terms of accuracy and 
computation time. 
 
0. INTRODUCTION 
 
This paper deals with the automatic building of the 
model of an electronic or power electronics circuit, 
and the integration of this model with its solving 
algorithm into a Java component designed in an 
optimisation aim. This component has to provide a 
computation time as short as possible, with good 
result accuracy, and the ability to give gradients (for 
SQP optimisation process). In the paper, only linear 
state equations are treated, as they are most of the 
time encountered in the power electronics area. The 
simulation of hybrid state systems is not taken into 
account, but will be easily possible in the future, as 
it is in fact composed of a series of linear state 
systems, sequenced with continuity conditions on 
the states. 
 
 

1. THE AIM OF THE PAPER 
 
The constrained sizing of an electrical device can 
be achieved through an optimisation process, which 
is based on a sizing model. Such a process is 
characterised as shown in Fig. 1 : 

 
Figure 1: the optimisation process 

The outputs jC  of this model are the values of the 
sizing criteria. They may concern values of state 
variables (mainly current in inductors and voltages 
in capacitors) at a specific date, extrema, r.m.s. or 
average values, etc… These criteria are calculated 
from the inputs iP  of the sizing model, mainly the 
parameters of the device. These parameters are 
inductances, capacitances, resistances, etc… The 
sizing criteria may depend on the state variables X  
of the application to size. In the context of the 
sizing of a power electronic structure, a linearity 
hypothesis is often possible for the state equation 
which is defined by (1). 

( ) ( ) ( )tuBtXAtX ⋅+⋅=&  (1) 

Here, t  represents the time, and ( )tu  is the 
expression of the state inputs (e.g.: the sources of 
the electronic circuit). A , B , and ( )tu  depend 

directly on the iP , the parameters of the circuit. 
Furthermore, some optimisation algorithms are 
based on gradient methods (e.g. VF13  [7]), which 
need the partial derivatives of the sizing criteria 

according to the model inputs, i.e. 
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Different approaches exist to obtain the states 
values from the inputs iP   [1] [2]. They are often 
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based on numerical simulation using ODE solving 
algorithms like Trapeze, Runge-Kutta, etc. 
Obtaining the partial derivatives of the states can be 
achieved through finite differences. These 
numerical approaches lead to important 
computation times, especially if the values of state 
variables have to be estimated only at a specific 
date. In the same way, if the sizing model has many 
outputs depending on several inputs, the 
computation of the gradient of the state variables 
according to the model inputs may be very time 
consuming and numerically sensitive. 
Another approach can be considered. As electronic 
circuit state systems are often linear ones, the ODE 
solving based on matrix exponentials is a good way 
to reduce the computation times, as shown below. 
 
The aim of the paper is to propose a tool that 
generates dedicated calculation components of 
linear state equations, specifically in the case of 
electrical circuits. Such a component allows 
calculating the state variables at a given date, 
without having to run a complete simulation. It also 
calculates the partial derivatives of the state 
variables according to the physical parameters of 
the state equations (fig. 2), without the need of a 
second evaluation, as the finite differences method 
needs. 
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Figure 2: the calculation component 

Computation time and memory occupation are as 
low as possible during the use of this component. 
 
2. THE MATRIX EXPONENTIAL FOR ODE SOLVING 
 
As in the paper, the state equation is supposed to be 
linear, its complete solution can be expressed by the 
following expression  [3] : 

( ) ( ) ( ) ( ) τττ duBeXetX
t tAAt ⋅⋅⋅+⋅= ∫ −

0
0  (2) 

In order to value such an expression, the 
exponential of the matrix A has to be defined. 
Several algorithms can be used to estimate it  [4] 
 [5]. Some of these use the eigenvalues of A, but 
they are limited for our purposes. In this paper, the 
selected algorithms do not use such methods. They 
are fast and require few memory space. 
Two methods have been selected : the Taylor series 
development and the Padé approximation. Both 
may be used in our tool. There are slight differences 
between the results obtained with each method, but 
these differences are negligible. The use cases of 
each method are determined by the state system 
expression. For very large state systems, the Padé 
approximation will be privileged, when for smaller 
systems, the Taylor series will be used. 

2.1. The Taylor Series Development 
 
The first selected algorithm is based on the Taylor 
Series Development of the exponential operator : 
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Computing this infinite sum is obviously 
impossible. An upper bound N  must be chosen, 
depending on the desired calculation accuracy ε . 
To obtain the accuracy ε , the upper bound N  
must satisfy to the following criteria  [4]: 
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As long as the Frobenius norm ( ( )AATrace T ⋅ ) 
of the matrix A is smaller than 1, this algorithm 
gives accurate results, but when the norm is greater 
than 1, the accuracy is lost.  
To compensate for that issue, the scaling and 
squaring method is used. This method is based on 
the following expression : 
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S is chosen so that 1
2

<S

A . Then the exponential 

of 
S

A
2

 is computed, and finally the result is squared 

S times. This algorithm gives very accurate results 
for all kinds of matrixes, as long as they are well 
conditioned. 
The condition number of a matrix measures the 
sensitivity of the solution of a system of linear 
equations to errors in the data. It also indicates the 
numerical disparity between the elements of the 
matrix. The condition number is calculated as 
shown in equation (6) : 
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where 
MAXSV  is the highest singular value of the 

matrix, and 
MINSV  the smallest one. 

When the condition number of a state system 
matrix is too high, it generally comes from the fact 
that two different modelling levels have been 
mixed. For example, mixing the first order 
modelling with the HF EMC modelling gives 
components with very disparate numerical values 
(the first order model will lead to components with 
big numerical values, as the HF EMC model will 
lead to very small numerical values). The models of 



circuit must be homogeneous on the modelling 
level. For example, to study the global functioning 
of a system, the first order model will be used, 
while the EMC will be studied with a specific HF 
EMC model. 
 
2.2. The Padé Approximation 
 
The ( )qp,  Padé approximation is based on the 
following expressions (7): 
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It gives accurate results with reduced computation 
time  [6] as long as the norm of the matrix is small. 
So, as for the Taylor series development, the 
scaling and squaring technique has to be used. The 
results are quite equivalent with the Taylor series 
methods. There are slight differences in terms of 
computation time or memory occupation, but it 
depends on the matrix of which the exponential is 
computed, and the differences are negligible. 
 
2.3. Obtaining the complete solution of the state 
equation 
 
As the considered systems are power electronics 
ones, the electrical sources are either constant or 
sinusoidal. 
As it will be detailed in the following part, equation 
(1), may be derivated according to the input 
parameters (e.g.: inductance, resistance, etc), giving 
a new state equation where expression of u(t) may 
be constant, sinusoidal, or the product of a 
polynomial expression with a sinusoidal expression.  
If ( ) Utu =  (e.g. a constant source), then : 

( ) ( ) [ ] UBAeAduBe Att tA ⋅−⋅=⋅⋅ −−−∫ 11

0
τττ  (8) 

This gives: 

( ) ( ) [ ] UBIeAXetX AtAt ⋅−+⋅= −10  (9) 

For a sinusoidal source (e.g. ( ) ( )tsintu ω= ), the 
integral term of the solution becomes : 
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where ud  is the degree), the integral term is: 
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Finally, all the different solutions for every single 
source have to be added to obtain the complete 
solution of the state system: 

( ) ( ) ( ) ( )∑ ∫
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where SN  is the number of sources. 
 
2.4. Obtaining the states partial derivatives 
 
Obtaining the states partial derivatives can be 
achieved by numerical methods such as finite 
differences, which shall be avoided as these 
methods use more computation time and memory. 
Moreover, these methods are numerically very 
sensitive to their adjustment parameters.  
Another method giving the states partial derivatives 
is based on a system symbolic recombination. In 
this way, the system equation is: 

( ) ( ) ( )tuBtXAtX ⋅+⋅=&  (13) 
The derivative of this equation according to any 
input iP  of the sizing model gives: 
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A new system can be created by these two 
equations: 

( )tuBXAX ~~~~~ ⋅+⋅=&  (15) 
where : 
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This new equation system is linear, and can be 
solved with the methods presented in this paper. In 
order to obtain the gradients of the states, the state 
equation has to be derivated according to every 
input of the sizing model, e.g. the iP  where 

{ }DNi ,,1K= .To obtain the lowest computing 
time, a new system will be created and solved for 
each derivate calculated. A system containing all 
the derivates could be created with the following 
matrixes: 
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With this system, only one solving is needed to 
obtain all the derivatives of the states. But the 
solving of this system needs the exponential of the 
matrix A~ , of which the computation time 
proportional to ( )( )3*1 nND +  where n  is the size 
of A  and DN  the number of derivatives 
computed. When the derivatives are calculated 
separately from each other, the total computation 
time is proportional to ( ) DNn *2* 3 . Solving 
several small systems requires less computation 
time than solving one large system. 
 
3. THE COMPONENT BUILDING 
 
The process leading from the circuit schema to the 
simulation component is divided in three distinct 
parts, as shown in Fig. 3. First of all, the current 
equations are obtained from the circuit scheme, and 
the state system is extracted from the circuit 
equations. The computation code is then generated. 
Finally, the component is packaged. 

Building of the netlist
(Schematic of PSpice)

Building of the State System

Packaging

Circuit

Netlist

Reduced state system

Generation of the Calculation code

Calculation code

Dedicated calculation component  
Figure 3: the component building process 

 
3.1. Expressing the state system 
 
The circuit is described using Pspice Schematic. 
From this tool, a netlist describing the circuit is 
obtained and can be used by a builder which gives 
the reduced state equation of the circuit. 
This builder parses the PSpice netlist to extract the 
node equations of the circuit. Form that, an 

independent set of mesh equations is built and the 
equations of each components are given  [8]. The 
modelling level used in a sizing process allows 
having simple linear models for the components 
(resistors, inductors, capacitors). 
Having all the equations of the circuit, the reduced 
state equations are obtained using symbolic 
treatment implemented in Macsyma  [9]. 
The time differentiated variables of a circuit are the 
currents in its inductors and the voltages on its 
capacitors. Thanks to the algebraic relations 
between the voltages of the circuit (from the mesh 
equations) and the currents in the circuit (from the 
node equations), the state variable vector is only 
made of a part of these variables. 
In this way, the state equation is defined by 
equation (1). The state variable vector X  is made 
with currents in inductors and the voltages on 
capacitors. The input vector ( )tu  is made with the 
circuit sources. Finally, the coefficients of the state 
variables and the sources in each equation are 
symbolically computed, defining the matrixes A  
and B . So, the state system is symbolically 
expressed. 
 
3.2. Automatic building of the calculation code 
 
With the expression of the state system, the model 
calculation code can be generated automatically. In 
this process, such a component calculates the state 
variables at a given date, without having to run a 
complete simulation. It can also calculate the partial 
derivatives of the state variables according to the 
physical parameters of the circuit (e.g. resistances, 
inductances, capacitances, etc.) (see fig. 4). 

Figure 4: Structure of a generated calculation component 
 

The created calculation component is Java based, 
but it uses some algorithms written in C (the matrix 
exponential algorithm for example). The generated 
Java code calls the C code during the calculation of 
the model. First of all, the calculation code of the 
state system matrixes ( A , B , and ( )tu ) can be 
generated without any particular difficulty, as their 
expressions are ANSI-C compliant. The generation 
of the calculation code of the partial derivatives of 
the state system matrixes requires a symbolic 
derivation treatment. In the paper, a Java based 
lightweight derivation tool developed in our 
laboratory (RAMA  [11]), has been used. 
Then the code using the calculation of the matrix 
exponential and the calculation of the state system 
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matrixes is generated. This code can calculate the 
value of the state vector X  at any date, without 
simulating any transient state. Finally, the specific 
code of the calculation component is generated. 
This last code includes the definition of the inputs 
and outputs of the component. It also includes the 
default implementation of the simulation 
component interface. This interface contains the 
methods necessary to access to its inputs and 
outputs (reading and writing their values, and 
connecting an input to an output of another 
component). It also contains two computation 
methods. The first one launches the computation of 
the outputs with the actual values of the inputs. The 
second one launches the computation of the partial 
derivatives of the outputs according to the specified 
inputs. All of these methods are implemented 
automatically. The code is then compiled. 
 
3.3. Packaging the component 
 
All the generated Java classes and the dynamic 
library containing the C functions (matrix 
exponential computation, matrix inversion, matrix 
determinant, …) used by the Java code are included 
in a Jar (Java ARchive) file containing a manifest 
pointing to the main class of the component, which 
is the class implementing the component interface. 
During the loading of this class, all the other classes 
(which are used by the component main class) are 
loaded, as well as the dynamic libraries, which 
contain the C code. 
The component is ready to compute the model, or 
to be connected with others components… 
 
4. RESULTS 
 
The results obtained with a static converter plugged 
on an electronic circuit representing the RSIL filter 
of a power electronics converter (fig. 5) is presented 
to illustrate the approach. The results given by the 
generated calculation component are compared with 
numerical simulations, in terms of accuracy, 
computation time and memory occupation. 
Simulations have been made with Simplorer [10]. 
 

 
Figure 5: the electronic circuit 

 
The generation of the component is done in less 
than one minute, including the analysis of the 

circuit, the generation of the state equation, the 
generation of the computation code and the 
packaging into a component. 
The comparison is done for several frequencies of 
the voltage source, to get a good representation of 
the harmonic spectrum of the operating mode. 
Although the whole simulation takes a little more 
computation time with the matrix exponential 
approach than with a numerical approach, the time 
gain lies in the fact that each point of the simulation 
can be obtained without the knowledge of the 
others, whereas the numerical simulation needs the 
knowledge of the past to obtain the next point. It 
means that obtaining the states values at st 1=  will 
require at least thousands of calculated points with 
numerical integration methods, whereas only one 
resolution is needed with the matrix exponential 
approach. As a consequence, the computation is far 
faster and the memory occupation far lower with 
the matrix exponential method than with the 
numerical simulation. The accuracy is equivalent 
with both methods, as shown in Fig. 6. 
 

 
Figure 6: the results of the matrix exponential approach (up), 

and the numerical simulation (down) 
Moreover, the calculation component gives also the 
gradients for optimisation processes. 
 
 
5. CONCLUSION 
 
In this paper we have presented a process which 
builds automatically a Java based component 
containing a model of an electronic circuit, and the 
algorithms required for the computation of this 
model. The component is automatically generated 
from the schema of the circuit. 
The computation of the model is based on a 
methodology using symbolic treatments of the 
models and matrix exponential to solve the ordinary 
differential equations involved in the models of 
electronic circuits. This method gives directly the 
values of the states at a specific date and their 
partial derivatives according to the circuit 
parameters, for optimisation purposes. To the 
contrary, numerical methods must start from the 



origin and integrate the ODE step by step until they 
reach the desired date. To obtain the partial 
derivatives of the states with the finite differences, 
another simulation must be computed for each input 
of the model. 
The presented methodology requires few 
computing time and few memory occupation. The 
states are obtained with a very good accuracy, as 
well as the partial derivatives, to the contrary of the 
derivatives obtained with finite differences, which 
are numerically sensitive to the differentiation step, 
and which may be unstable. 
The purpose of this methodology based on matrix 
exponentials is not the simulation of electrical 
devices, as other tools can do it very well, but to 
reduce the computing time while obtaining the 
values of the states at a certain date and their partial 
derivatives. This methodology shall reduce the 
overall computing time of the optimisation of an 
electrical device. 
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