
 SIMULATION IN CRYPTOGRAPHIC PROTOCOL
 DESIGN AND ANALYSIS

Ning Su

Richard N. Zobel
Frantz O. Iwu

Department of Computer Science
University of Manchester

Oxford Road, Manchester, M13 9PL
United Kingdom

ningsu@lachine.co.uk, rzobel@cs.man.ac.uk, iwuo@cs.man.ac.uk

KEYWORDS
Agent-based simulation, cryptographic protocols,
encryption, decryption, Java security features

ABSTRACT

Security and safety were and still are a major concern
for distributed computing systems and similar networks
of computer environments. A number of cryptographic
protocols have been proposed to achieve security and
safety of network communication. There is growing
interest in using computer simulation to help with
understanding, analysing and designing of dynamic
complex real systems. This paper studies the Agent-
based simulation system on modelling the cryptographic
protocols. A general formula of Agent for the
simulation of cryptographic protocols has been
proposed, and the dynamical environment of the
simulation, which includes encryption, decryption of
messages, and communication between the Agents, has
been achieved by using the Java technology. The
simulation system provides an approach for the designer
to analyse and verify the cryptographic protocol during
the design process.

INTRODUCTION

There are two important aspects concerned in the
security and safety of the distributed computing systems
and similar networks of computers environment:

(a) Authentication of different computers and users in
the network.

(b) Protection of messages passing among them and
preventing illegal access of resources.

Data passing over networks is particularly vulnerable to
attack. Encryption is necessary when transferring
confidential information, such as bank details, ID and
personal data, etc. In general, there are two encryption
schemes: symmetric (secret-key) encryption and
asymmetric (also called public-key) encryption [1]. In
the symmetric encryption, the same key is used for

encryption and for decryption, and therefore it must be
distributed through a secure channel in the first place.
In public encryption, there is a key pair consisting of a
public key and a matching private key, in which one key
is used for encryption and another for decryption.
Asymmetric encryption (such as RSA and ECC) has
advantages over symmetric encryption in the aspects of
security and key management, but usually is much
slower, requiring much more computation.

Simulation techniques have proven to be useful for
designing real world systems. Modelling and
simulation can provide a way of analysing,
understanding and optimising the dynamic complexity
of real systems. Simulation can also be used to verify
reliability and correctness of system designs. The
cryptographic protocol can be simulated to help for
design, analysis and test before the real system is
constructed and deployed.

Java is an object-oriented programming language with a
comprehensive set of security and safety measures built
in. The multithreading is also supported directly in
Java. The simulation environment of cryptographic
protocols presented in this paper has been achieved by
using the Java technology.

CRPTOGRAPHIC PROTOCOLS

A cryptography system is built on many levels.
Building upon the encryption algorithms are protocols.
A number of cryptographic protocols have been
proposed to achieve security and safety for network
communications [2]. It is not sufficient to study the
security of the underlying algorithms alone, as a
weakness on a higher-level protocol can render the
application insecure regardless of how good the
underlying cryptographic algorithms are. Protocols
involving shared-key cryptography use an
authentication server which shares a key with each
entity and typically generates new session keys for
communication between the entities. Public-key
protocols use a certification authority which is trusted to
pass on the public keys of the entities. Entities in

cryptographic protocols are referred as principals and
assumed to have unique identities.

The Otway-Rees Protocol

A share-key authentication protocol was proposed by
Otway and Rees in 1987 [3]. The details of the Otway-
Rees Protocol are as below:

State 1: Principal A sends “M, A, B, {Na, M, A,
 B}Kas” to principal B.
State 2: Principal B sends “ M, A, B, {Na, M, A,
 B}Kas, {Nb, M, A, B}Kbs ” to Server.
State 3: Server sends “ M, {Na, Kab }Kas, {Nb, Kab
 }Kbs ” to principal B.
State 4: Principal B forwards “ M, {Na, Kab }Kas ” to
principal A.

A and B are unique identities of principals A and B.
M, Na and Nb are specific statements generated by
principals A and B.
Kas and Kbs are shared keys between server and
principals A and B.
Kab is a session key generated by server for
communication between principals A and B.

In the protocol, principal A sends principal B some
encrypted information encrypted with Kas, together with
enough information for principal B to generate a similar
encrypted message with Kbs. Principal B forwards both
information to the server. The server decrypts the
encrypted information and checks whether they match
M, A and B. If they are matched, then the server
generates session key Kab and embeds it in two
encrypted messages using shared key Kas and Kbs with
appropriate statements. The two encrypted messages
are sent back to principal B and then principal B
forwards the appropriate part to principal A. Principals
A and B decrypt the messages and verify the contents.

If both satisfied, then principals A and B start to use
session key Kab to communicate between them.

A GENERAL FORMULA OF AGENT FOR
SIMULATION OF CRYPTOGRAPHIC
PROTOCOL

Intelligent agents are one of the most important
developments in computer science to have emerged in
the past decade [4]. Agent-based simulation can be used
to model cryptographic protocols [5] [6]. A conceptual
model of the simulation system needs to be introduced
to describe how agents may communicate within a
simulation environment and formalised using the
Discrete Event Simulation (DEVS). DEVS can be used
to describe the autonomous and dynamic behaviour of
agents and their reaction for events [7]. A
cryptographic protocol can be considered to include a
set of agents and communication channels. Each agent
is an autonomous and reactionary entity (principal) with
the capability of performing a sequence of operations
(events) on information. A channel is an abstraction of
the communication facility. The agents interact each
other according to some predefined rules to send,
receive and process information via the communication
channels. A general formula of agent characterised by a
tuple is introduced as below:

ΣAgent = (X, S, Y, δint, δext, λ, γ, M, ta)

in which,
X = {x1, x2, …… xn } is a non empty set of input events.
S = {s1, s2, …… sn } is a non empty set of admissible
 sequence of states.
Y = {y1, y2, …… yn } is a non empty set of output events.
δint : An internal state transition function describing
 the behaviour of a finite state automaton.
δext : An external state transition function describing
 reaction of the agent to external events.
λ : An output function, which maps the internal
 agent state to the output set.
γ : an input/output coupling relationship
M : {m1, m2, ……mn} is a non empty set of unique
 component references.
ta : Represents the time the agent stays in a

particular state before transiting to the next
sequential state.

AGENT SIMULATION MODEL OF OTWAY-
REES PROTOCOL

Using the agent definition, agent simulation model for
the Otway-Rees protocols is presented. In the model,
principal A, principal B and the Server are referred as
Agent A, Agent B and Agent S. Figure 2 shows the
input and output ports of Agent A, Agent B and Agent S
in Otway-Rees Protocol respectively:

1: M, A, B, {Na, M, A,
B}Kas

2: M, A, B, {Na, M, A,
B}Kas, {Nb, M, A,
B}Kbs

3: M, {Na,
Kab}Kas, {Nb,
Kab}Kbs

4: M, {Na, Kab}Kas
Principal A Principal B

Server

Figure 1 The Otway-Rees protocol

Figure 2: Simulation model of Otway-Rees Protocol

Agent A:

In this model, Agent A has an output port Out_A_1 and
an input port In_A_1 for communication with Agent B.
A formal description of agent A is shown as below:

ΣAgentA = (X, S, Y, δint, δext, λ, γ, M, ta)

X = {In_A_1 }
S = {idle, send, receive, save, retrieve, process_message
 – verificate, generate, encrypt/decrypt}
Y = {Out_A_1 }.
δint (idle) = (make_INI_REQUEST).
δint (cond = true) = (process_message).
 δint (cond = true) = (send_message, send).
δext = In_A_1 = (receive_message, receive).
λ (cond = true) = Out_A_1 = message.
γ = {(Out_A_1, In_B_1), (In_A_1, Out_B_1)}
M = {Agent B}
ta = Time value.

The cond is a conditional variable, which indicates
satisfaction of processing messages. The agent first
makes an internal transition from idle to
process_message state. When this occurs, a message is
generated and then the state is transmitted to send state.
The agent remains in this autonomous state until an
external event occurs. Similarly, Agent B and Agent S
can be developed trivially [8].

IMPLEMENTATION

The Java technology has been used to achieve the
dynamical environment of the simulation. The virtual
networking, which uses special address of localhost,
has been used to establish the simulation environment
[9]. In the DEVS models, each agent comprises various
parts as shown in figure 3.

Agent name
Declaration of variables
Communication ports

Dynamic Events:
Send and receive information;
Save and retrieve information;

Processing information – verificate, generate,
encrypt, decrypt information, etc.

Figure 3 Basic structure of an agent composition

In the model, some agent needs to interact with more
than one agent and others just communicate with one
agent. The class socket is used to establish a
communication channel for the agent without multi-
communication capability:

Socket s = new Socket (“localhost”, port number);

The multi-communication capability of agent is
achieved by combining classes Serversocket and
Thread:

ServerSocket ser = new ServerSocket (port number);

And a loop for the thread class:

While(!false)

{

Socket s =ser.accept();

Thread t= new ThreadedHandler (s);

t.start();

}

The class of Threadedhandler drives from class Thread
and contains the communication loop with the other
agent in its run method. Thus, for each new connection
with a new agent (i.e. each new socket connection), a
new thread will be launched to take care the
communication and therefore the agent can
communicate with more than one agent at the same
time. Different types of information (text, binary data
and serialized object) can be transferred by using
different classes. In the simulation model, all
information (plaintext or ciphertext) are converted to
binary data and then transmitted [8].

In order to using the Java security features, packages
java.security and javax.crypto should be imported into
the Agent (Java program). If using RSA algorithm, a
new provider (“Legion of Bouncy Castle”) needs to be
added in the security description file [10] (
jre/lib/security/java.security):

Security.provider.6=org.bouncycastle.jce.provider.Bou
ncyCastleProvider

Agent A Agent B

Agent S
(Server)

Out_A_1

In_A_1 Out_B_1

 In_S_1

Out_B_2

Out_S_1

In_B_2

In_B_1

The following classes have been used for generating
secret key:

KeyGenerator keygen = KeyGenerator.genInstance
 (“algorithmName”);
SecureRandom random = new SecureRandom();
Keygen.init(random);
SecretKey key = keygen.generateKey();

In the simulation models, DES cipher algorithm is used,
so

algorithName = DES;

For generating asymmetric keys, following classes have
been used:

KeyPairGenerator keysgen =
 KeyPairGenerator.genInstance
 (“algorithmName”, “providerName”);
SecureRandom random = new SecureRandom();
Keysgen.initialize(keysize, random);
KeyPair keys = keysgen.generateKeyPair();
Key publickey = keys.getPublic();
Key privatekey = keys.getPrivate();

In the simulation models, RSA cipher algorithm is used
and the provider is BC (Legion of Bouncy Castle), so

algorithName = RSA;
providerName= BC;

The class Cipher is used for all encryption algorithms:

Cipher cipher =
 Cipher.getInstance(“algorithmName”,
 “providerName”);

Details of the implementation of cryptosystem are
presented in [8].

SIMULATION RESULTS

The computer used for the simulation is a PC (Pentium
2.0GHz, 256MB memory, Windows XP). JavaTM 2
SDK, Standard Edition Version 1.4.0 has been installed
in the PC.

As one window can only run one Agent, multiple
windows should be opened simultaneously for the
simulation of the protocols.

Symmetric key DES and asymmetric key RSA have
been used throughout the simulation.

First, a simple simulation model of Otway-Rees
Protocol was implemented to test the cryptosystem and
communication between Agents. In the test, the
plaintext of Agent A was encrypted using session key

Key_AB that was generated by Agent S (Server) and
then sent to Agent B. Agent B received the encrypted
message and decrypted it using the same key. The
screen output of the test is shown in Figure 4 and 5.
The results show that the encryption, decryption and
transfer of the message have been successfully carries
out.

Figure 4 Agent A’s message (plaintext and ciphertext)
sent to Agent B

Figure 5 Agent A’s message (ciphertext and plaintext)
received by Agent B

The simulation models of four Cryptographic protocols
(Otway-Rees, Needham-Schroeder, Kerberos and
Digital Envelope protocols) have been developed and
details of simulation results are presented in [8].

In the simulation of Otway-Rees Protocol, three
windows have been opened simultaneously for Agent A,
Agent B and Agent S respectively. The interaction
between the Agents in the protocol is shown in Figures
6-8. The execution sequences are as following:

(1) Start Agent B to wait for communication.
(2) Start Agent A to make initial contact with Agent B.

Agent A is then awaiting an input from keyboard
after sending the message to Agent B. If CON is
inputted, the state will be transmitted to the next
state.

(3) Start Agent S to wait for communication with
Agent B.

(4) Agent B contacts with Agent S.
(5) Agent S replies to Agent B’s request.
(6) Agent B receives Agent S’s message.
(7) Agent B verifies the message.
(8) Agent B passes the Agent S’s message to Agent A.
(9) Agent A verifies the message.
(10) Secure communication is then established between
Agent A and Agent B if satisfied.

Figure 6 Agent A’s execution in Otway-Rees Protocol

Figure 7 Agent B’s execution in Otway-Rees Protocol

Figure 8 Agent S’s execution in Otway-Rees Protocol

APPLICATION OF THE SIMULATION

The simulation of cryptographic protocols could have
various applications. For example, the efficiency of the
protocols including encryption/decryption versus
message length can be assessed. Attack activity can be
also modelled to assess the security design of the
protocols. An attack Agent has been developed to
simulate the attack in Kerberos protocol, which
retrieved the session key (key_AB) and then contacted
Agent A using this key, as shown in Figure 9. In the
simulation, an extra window was opened to run the
attack Agent. Once Agent A received the
communication encrypted by key_AB, the validation of
the key has been checked as there is a lifetime for the
key imposed by Agent S (Server) in Kerberos protocol.
In the case, the attacker has used an out of date session
key and therefore the verification has failed, as shown in
Figure 10.

Figure 9 Screen output of Agent Attack’s execution in
Kerberos Protocol

Figure 10 Screen output of Agent A under attack in
Kerberos Protocol

CONCLUSIONS

Dynamical environment of Agent-based cryptographic
protocols simulation system has been achieved using
Java technology. The Java’s networking and
multithreading features have been used to establish
communications between Agents in the protocol. The
Java’s security technology has been applied to generate
keys (secret key and public key schemes), encrypt and
decrypt messages.

A general formalism of Agent for simulation of
cryptographic protocols has been proposed and
implemented. Otway-Rees protocol has been
successfully modelled using the Agent-based simulation
system.

It was suggested that the Agent-based cryptographic
protocols simulation system could have various
application. The simulation system could be used to
analyse, verify and assess design of the protocols,
including correctness, weakness, reliability, efficiency
of protocols. The simulation system could be also used
to model attack activity.

REFERENCES

[1] Http://www.ssh.com/support/cryptography/
[2] Michael Burrows, Martin Abadi and
 Roger Needham, A Logic of Authentication,
 SRC Research Report 39, February, 1990
[3] Otway, D. & Rees, O. 1987 Efficient and

Timely Mutual Authentication. Operating
Systems Review Vol. 21, No.1, pp. 8-10.

[4] Agent Technologies
(http://www.insead.fr/CALT/Encyclopedia/Co
mputerSciences/Agents/)

[5] Frantz O. Iwu, PhD Thesis, Manchester
University, 2003.

[6] Frantz O. Iwu and Richard N. Zobel, UK SIM
Conference, Cambridge, April 2003.

[7] B. P. Zeigler, Multi-Facetted Modelling and
Discrete Event Simulation. Academic Press,
1984.

[8] N. Su, Simulation In Cryptographic Protocol
Design And Analysis, MSc Thesis, Department
of Computer Science, University of
Manchester, 2003.

[9] Java2 SDK, Standard Edition,
 Documentation Version 1.4.0
[10] Http://www.bouncycastle.org/index.html

NING SU obtained his BSc and MSc in Engineering
Mechanics at Zhejiang University and Xian Jiaotong
University in China respectively. He got his PhD in
Civil Engineering at the University of Dundee and MSc
in Computer Science at the University of Manchester in
the UK. He is currently working for LaChine LinCom
Limited and his interests include Java technology,
distributed simulation and network security.

RICHARD ZOBEL graduated with BSc(Eng) (London)
in 1962, and with PhD (Manchester) in 1970. He is a
C.Eng, and Member of both BCS and IEE. He has 118
publications, including a book and a patent, and has
supervised 100 postgraduate students. He retires fully
from Manchester University Computer Science
Department end October 2003 after 37 years service as
Lecturer and Senior Lecturer. He is a Member of
UKSim, and of SCS from whom he received an
Outstanding Service Award in 2002. His interests are
currently distributed simulation, distance learning and
network security.

FRANTZ IWU is a research associate at the University
of York. He obtained his MSc in Advanced Computer
Science and his PhD from Manchester University,
United Kingdom. His research interest includes
distributed simulation systems, security for distributed
simulation under commercial network protocols,
application of HAZOP to computer systems, system
safety analysis, software flow failures and fault
propagation, systematic development of large software
systems from reusable fragments using the B-Method.
He is a member of the British Computer Society.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

