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ABSTRACT 
With the rising complexity and distribution of integrated 
circuits and embedded systems, the requirements for 
their development increase as well. Above all, the veri-
fication of a large design proves to be the bottleneck of 
a conventional computer-based simulation in the design 
flow, requiring several hours to several days. A possible 
approach to accelerate a simulation is to process differ-
ent events on several processors at the same time. As-
suming a one-processor-architecture, this allows real 
concurrency of the execution. In a second step the 
model or a part of the model is executed on reconfigur-
able hardware. This method is marked by the unique 
costs of partitioning but takes advantage of the signifi-
cantly higher execution speed and real parallelism on 
one chip. This paper presents a framework for a Field 
Programmable Gate Array (FPGA) based co-simulation 
of electronic systems as well as an efficient partitioning 
strategy for Statecharts as a basis for co-simulation. An 
FPGA based simulation acceleration and the Statechart 
simulator JStateSim have been developed at FZI/ESM 
as well as the tool JVHDLGen that enables Very high 
speed integrated circuit Hardware Description Language 
(VHDL) code generation out of Statecharts, considering 
also concurrent charts. 

INTRODUCTION 
Dependent on the level of abstraction and the different 
views, a model can be described in different forms. 
Finite State Machines (FSM) are suitable to specify the 
behavior of discrete event systems. Extended FSM ad-
ditionally introduce the concept of state hierarchy, con-
current states and broadcast. In order to model a com-
plex behavior, Harel extended finite state machines by 
Statecharts including concepts like combination of 
Mealy and Moore machines (hybrid state machine), 
conditions, hierarchical states, history junctions, concur-
rent states and broadcast (Harel 1987). 
The CASE tool MATLAB/Simulink/Stateflow (The 
Mathworks) is used to work on Statecharts, starting 
from the point, where the model or a part of the model 
shall be mapped to hardware and then embedded into 

the simulation. Stateflow is a graphical extension for 
Simulink and allows the modeling and simulation of 
state machines (as for example BetterState (Wind River) 
(Stingl and Dreier 1999)). In contrast to Simulink sys-
tems, Stateflow is event triggered, which means that a 
chart is only processed if a previous defined event oc-
curs. Inside a Simulink model a Stateflow diagram is 
represented by a Stateflow block. A model can have 
several of them that can communicate through its inter-
face. A Stateflow machine is defined as the set of all 
Stateflow blocks in a model. During simulation, signals 
can be exchanged with Simulink. The Stateflow concept 
extends Harel-Statecharts, e.g., by junctions (allow 
representing logical structures such as a for loop), 
scopes (to define the valid scope for events and data), 
directed event broadcasts (allows sending an event ex-
plicitly to a given state), implicit events and condition 
actions (executed, if the condition is evaluated as true) 
(Dreier et al. 2001). 
The simulation acceleration is based on the integration 
of a hardware supported simulation (emulation) in a 
heterogeneous network of multiple simulators. Java 
Remote Method Invocation (RMI) is a mechanism hid-
ing this from the user. It is designed as client-server 
architecture between local and remote objects. The 
communication between both is taken over and almost 
completely hidden by RMI. In order to accomplish a 
distributed simulation, the model must be partitioned 
into several concurrently simulated submodels. Each of 
them is executed by an own simulator. Goal of the par-
titioning is to maximize parallel execution and to mini-
mize the communication costs at the same time. Fur-
thermore, the static load balancing and the respective 
synchronization of the simulators are taken into account 
(Mehl 1994). Since Statecharts have a complex seman-
tic, they cannot be converted directly into graphs, like 
logic circuits. Possible partitions, the cost of computa-
tion per partition and the communication between the 
partitions must be analyzed apriori. Then, the State-
charts are modeled in hypergraphs, so that partitioning 
algorithms, that have been proved useful for logic cir-
cuits, can also be applied to Statecharts. 
 
 
 



PARTITIONING OF STATECHARTS 

Heuristic Iterative Partitioning Algorithms 
The algorithm of Kernighan and Lin (KL) (Kernighan 
and Lin 1969) is an algorithm of bi-partitioning. KL 
begins with an arbitrary partitioning and exchanges the 
nodes from the two partitions in pairs, as long as the cut 
size can be reduced. The KL algorithm treats only nodes 
with uniform weights, and the size of a partition is 
fixed. This algorithm cannot be used for partitioning of 
hyper graphs. The algorithm of Fiduccia and Mattheyses 
(FM) (Fiduccia and Mattheyses 1982) is an extension of 
the KL algorithm. The FM algorithm permits the 
movement of single nodes between partitions. Thus, the 
size of a partition is changeable. With the FM algorithm 
the selection of the node from those with the same gain, 
which can be moved next, is arbitrary. Krishnamurthy 
(Krishnamurthy 1984) introduced the concept of "level 
gains", in order to distinguish between such nodes ac-
cording to their gains from later movements. Sanchis 
(Sanchis 1989) extended the concept of Krishnamurthy 
to a k-way partitioning (K-FM). A node is marked as 
free, if it is not moved in a pass of the algorithm. Oth-
erwise it is marked as locked. The K-FM algorithm of 
Sanchis can be used for an arbitrary number of parti-
tions and nodes with different weights. 

All iterative methods specified above model a circuit as 
non-directional graph or hyper graph, without consid-
ering the direction of signals. In some situations the 
information about the direction of signals is useful, in 
order to improve the partitioning (Cong et al. 1994, 
Chen et al. 1997). 

Partitioning of Logic Circuits 
Before partitioning a logical circuit, its net list is first 
modeled in graphs. The partitioning of logical circuits 
can then be realized as partitioning of graphs or hyper 
graphs. The partitioning of a hyper graph is formalized 
in (Lengauer 1990). If a given net list contains sequen-
tial components (e.g., flip-flops), such components must 
be removed first. After the acyclic k-way partitioning 
these components are assigned to suitable partitions on 
the basis of the same computing load as well as the 
connections between sequential components and parti-
tions. 

A logical block is modeled with nodes and a net be-
tween logical blocks with directed hyper edges. The 
primary inputs and outputs are represented also with 
nodes. Figure 1 shows a logic circuit with four gates 
modeled in MATLAB/Simulink. 
 

 
Figure 1: Logic Circuit with Four Gates 

The corresponding hyper graph is illustrated in figure 2. 
For a hyper edge an additional node is added. Here it is 
marked by a black point. The directed edges between 
the nodes of a logic gate and the node of a hyper edge 
represent the input and output nodes of this hyper edge. 

 
Figure 2: Directed Hyper Graph of the Circuit in Fig. 1 

Analysis of a Stateflow Model 
Because Statecharts have a complex semantic, they 
cannot be converted directly in graphs as it is possible 
with logic circuits. The possible partitions, the compu-
tation cost of a partition and communication between 
partitions must be analyzed first, which is based on the 
analysis results of the analyzed Statecharts modeled in 
hyper graphs. Partitioning algorithms for logic circuits 
can then be used for the partitioning of Statecharts. The 
concurrency of a distributed simulation depends on the 
concurrency of the model. A Stateflow machine can 
contain several charts. Within Statecharts the concur-
rency depends on the state hierarchy. Figure 3 shows a 
Stateflow machine with two chart blocks. The two 
charts are illustrated in figure 4 and figure 5. 

 
Figure 3: Stateflow Machine with two Statecharts 

The state hierarchy can be represented by a tree, 
whereas the root node is the node for the Stateflow 
machine. The successors are the nodes for charts. The 
concurrency of a chart is defined as the number of sub-



states of the chart, if the chart is a state with AND de-
composition. If the chart is a state with XOR decompo-
sition, its concurrency is defined as 1, in other words 
this chart can be simulated on one simulator only. 

Figure 4: Chart1 of Stateflow Machine in Figure 3 

The concurrency of a model is the sum of the concur-
rencies of all its charts. The maximum number of parti-
tions of a model is decided by its concurrency. 

 
Figure 5: Chart2 of Stateflow Machine in Figure 3 

Since only one substate can be active in a state with 
XOR decomposition at each time, the partitioning of a 
state with XOR decomposition will produce no paral-
lelism. The possible partition can be either a chart or 
substates of a chart, depending on whether the chart has 
XOR or AND decomposition. Figure 6 illustrates the 
state hierarchy of the model shown in figure 3. The 
node m represents the Stateflow machine; the nodes c1 
and c2 represent the chart Chart1 and Chart2. The 
concurrency of the Statecharts Chart1 and Chart2 are 
thus 2 and 3. Therefore, the concurrency of this model is 
5. Thus, this model can be divided in 5 partitions at 
most. 

 
Fig. 6: State Hierarchy of a Model with Concurrency 5 

The cost of computation of a model with Statecharts is 
mainly caused by the execution of state actions and 
transitions. It is assumed that all transitions and state 

actions are executed with the same frequency, the com-
putation cost of each transition and state action is the 
same, and the computation cost of a state is defined as 
the sum of the number of its state actions and transi-
tions. Since transitions between states can exist in dif-
ferent hierarchy levels, the computation costs are cal-
culated in two steps. First, local computation costs are 
calculated. The local computation costs of a state are 
defined as the sum of the number of state actions and 
the number of transitions between direct substates. This 
result will be marked first as weight of a node in the 
state tree. The final computation costs of a state are 
calculated by accumulating the final costs of its direct 
substates and its local costs. This calculation is accom-
plished gradually from the leaves to the root. For the 
leaves the local costs are also the final costs. Figure 6 
shows, how the computation costs of the model given in 
figure 3 are calculated. Since the root node does not 
contain state actions and transitions, its local costs are 0. 
The substates A and B of the state s0 each contain a 
state action. The state s0 contains 3 transitions includ-
ing the default transition. The final computation costs of 
the state s0 are the sum of the costs of the nodes A, B 
and its local costs 3. 

Communication Costs Between Partitions 
The partitions of states or charts must communicate 
with each other, if the events generated by a partition 
need to be passed on to another partition, or if two par-
titions access common variables. Therefore, the data 
objects exchanged between two partitions differ from 
events and variables. A data object can be accessed 
either by a state action or a transition. In order to deter-
mine the communication costs between partitions, a 
communication graph for a partitioning is defined. A 
communication channel between two partitions P1 and 
P2 exists if one of the following conditions is fulfilled: 

•  A variable will be changed by a state action or 
transition in P1, simultaneous it is operand of 
an expression of state action or transition in P2.  

•  A normal or implicit event in P1 must be sent 
via broadcast to P2.  

•  A directed event of a transition in P1 is sent to 
another transition in P2.  

•  P1 must inform P2 about the validity of a state 
within P1 as a state condition. 

 
Figure 7: Communication Graph between Partitions 



The nodes of the communication graph represent a pos-
sible partition. If one of the conditions specified above 
is fulfilled, a directed edge is added from P1 to P2 as a 
communication channel. It contains all data objects that 
shall be sent from P1 to P2. It is assumed that all data 
objects are exchanged with the same frequency between 
the partitions and the communication costs between two 
partitions in one direction are defined as the number of 
different data objects. Figure 7 shows the communica-
tion graph of the model given in the last section. 

FPGA-BASED CO-SIMULATION 

Conversion to VHDL Code 
In order to execute a MATLAB/Stateflow model on an 
FPGA it must be converted to a hardware description 
language. After the synthesis it can then be executed on 
an FPGA and merged into a distributed simulation. 

SF2VHD (Camera 2001) is a MATLAB M-script that 
uses the MATLAB API and translates graphically rep-
resented Statecharts to a textual representation in 
VHDL. The VHDL code is output as character string by 
the individual functions of an M-script. A second M-
script serves for the syntax conversion of the action 
label into appropriate VHDL operations. A powerful 
language like Statecharts does not map easily into 
hardware. Therefore, not all possible expressions are 
considered in SF2VHD. An important constraint re-
garding Stateflow designs is that no AND decomposi-
tion is supported, i.e. states can only have XOR decom-
positions. In JVHDLGen, that was developed in Java at 
FZI/ESM, the functionality has been extended by states 
with AND decomposition. JVHDLGen bases on a 
parser that is capable to parse MATLAB (mdl) files. 
The objects are converted to Java objects. 

In Statecharts concurrently executed states can commu-
nicate with each other by broadcast or common data. In 
VHDL concurrency is supported by processes. Proc-
esses can communicate through signals. In VHDL'93 
the data type shared variable can be used for 
communication as well as the instruction wait for syn-
chronizing processes. An alternative method is putting 
concurrent states into one process that is executed in 
one clock cycle. 

An enumeration type is defined for each concurrent 
state. The possible values of this type are the names of 
the basic states. A virtual state is additionally added, in 
order to represent the source state of the default transi-
tion. A state inside the virtual state means that this state 
is inactive, too. Since the history junction is not imple-
mented, yet, all default transitions of the concurrent 
states are executed when entering the appropriate state. 
When leaving the state with AND decomposition all 
concurrent substates are set to the respective virtual 
state. Thus, with the next entry to the state with AND 
decomposition, the default transitions are always exe-
cuted. In order to easily identify state names, the names 
of all of its super states are added as a prefix. In figure 8 

an example Statechart is shown that can be converted to 
VHDL code by JVHDLGen. 

 
Figure 8: Chart with Nested AND Decomposition 

Development Environment and Tools 
The rapid prototyping system RP.2002 (Kühl 2002) is 
used as an evaluation platform for the development of 
FPGAs as well as FPGA Advantage of Mentor Graph-
ics. The CORE generator of Xilinx supplies adjustable 
COREs which are optimized for Xilinx FPGAs. A fea-
ture of the RP.2002 is the extensive use of standard 
hardware (COTS) components. This does not only lead 
to low costs, the system can be also easily integrated 
into an existing network and is suitable for distributed 
simulation. A backplane integrates a PCI controller and 
an FPGA and allows the access of external actuators 
and sensors. As operating system Linux is used together 
with the real-time application interface RTAI. 
By means of special blocksets, such as SystemGenerator 
(Xilinx) and AccelFPGA (AccelChip) as well as the tool 
JVHDLGen VHDL code can be generated from MAT-
LAB/Simulink/Stateflow models for the configuration 
of an FPGA. AccelFPGA requires fixed point MAT-
LAB or Simulink files as input. The model either has to 
be developed in this form or must be transformed to it 
manually. MATLAB models offer the opportunity to do 
this automatically by executing an auto quantize com-
mand. Additionally, compiler directives must be given 
to specify which part of the model shall be converted to 
VHDL. They provide model specific knowledge for the 
compiler and offer the opportunity for optimization. 
AccelFPGA generates a VHDL description on register 
transfer level out of the modified Simulink or MATLAB 
design, which can then be synthesized and simulated. 
MATLAB/Stateflow blocks are not supported. Similar 
limitations exist for SystemGenerator. Therefore, the 
tool JVHDLGen is used, together with the tools from 
Mentor Graphics and Xilinx. 
JStateSim allows a distributed discrete event simulation 
of Stateflow charts, that are similar to Harel Statecharts 
(Harel 1987), analogue to MATLAB/Stateflow, but ad-
ditionally offers the possibility for a distributed simula-
tion using conservative or optimistic protocols 
(Schmerler et al. 1997, Fujimoto 2000). It is imple-
mented in Java and is for that reason platform inde-
pendent. The communication is realized using RMI. 
Simulator instances can be coupled as many as desired. 



Transition notations are restricted to the following for-
mal description: 

•  if or if/then 
•  if := [condition] or event 
•  then:= (event)* and/or (equa-

tion)* (separated by ";")  
•  equation := VK ° VK 
•  VK := variable or constant 
•  ° := + or – 

In order to use JStateSim as part of a distributed simu-
lation with hardware acceleration, a part of the simula-
tor was modified so that the hardware is completely 
hidden from the other simulators and the control proc-
ess. In this case the simulator does not get a model as 
input, since it is loaded while the FPGA is configured. 
Otherwise the behavior is equivalent to that of an in-
stance of the simulator of JStateSim, but can only be 
started with according hardware (FPGA) and software 
(library for accessing the FPGA). The communication 
between the object instances of JStateSim as well as the 
CPU on the FPGA rapid prototyping system with the 
other simulators that are involved in the simulation is 
taken over by Java RMI. 

Simulation Structure and Design Flow 
The simulation structure is shown in figure 9. The com-
munication between the C interface of MATLAB (S 
function) and Java is done using the Java Native Inter-
face (JNI). A control process communicates with the 
RMI part of the simulators that are implemented in Java. 
 

 
Figure 9: Simulation Structure  

A bidirectional connection between MATLAB and the 
RP system is also possible since the interface is the 
same as between MATLAB and JStateSim. The JNI is 
used as an interface between Java and the hardware as 
well as for the communication between JStateSim and 
MATLAB. It allows Java code running in a Java Virtual 
Machine (JVM) to operate with libraries written in 
C/C++. 
The VHDL design flow (figure 10) is divided into three 
fields: creation, implementation and verification. The 
starting point of each design is its specification. In 
VHDL this could be done on abstraction layers like al-
gorithms and function blocks or converted to from a 
non-formal description. Already on this layer the cor-
rectness of the design should be tested by logic simula-
tion. This high level description is translated to the reg-

ister transfer level (RTL) and handed over to the synthe-
sis tool. The supported language by this tool is the first 
of the dependencies appearing in the tool chain. The 
synthesis itself converts the VHDL RTL description to a 
mostly technology independent logic description, e.g., 
by using special features of a certain FPGA; even the 
RTL code is not target independent. This step is fol-
lowed by place and route, which maps the design to the 
technology of a certain vendor. At this point, precise 
timing information is available in SDF (standard delay 
format) and a timing simulation is possible to verify 
whether all constraints are met. If an FPGA is the target 
platform, a bitstream for its configuration is generated. 
The modules are placed on the FPGA and are intercon-
nected. 

 

Figure 10: VHDL Design Flow 

Implementation of the Interfaces 
A JNI shared library provides an interface to the part of 
the simulator running on the FPGA. It translates and 
forwards the messages from JStateSim to the kernel 
module. Therefore, two FIFOs are installed for commu-
nication purposes and cleared at the end of a communi-
cation step. A kernel module sets up the communication 
between the simulator and the FPGA and uses the func-
tionality of the PCI-driver and the FIFOs. The kernel 
module offers functions for the initialization and 
cleanup which are executed after loading and before 
unloading the module. The other functions provide read 
and write access to the dual port RAM and commands 
like model reset and execution of a simulation step. 
These recurrent operations are implemented at this low 
level to reduce the communication overhead. The bus 
interface is the link between the local bus, the part of the 
simulator running, and the FPGA. Basically, it consists 
of a clock former and a dual-port RAM, instantiated 
using the Xilinx CORE generator. This type of RAM is 
used because the local bus and the simulator have to 
read and write simultaneously to the RAM. 
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Control Unit 
The control unit (figure 11) makes data available and 
controls the MATLAB model. Its design should be 
flexible and serve models without significant changes as 
much as possible. The simulated model is attached to 
the control unit. By default, it offers a clock input as 
well as a synchronous reset and enable input. Data in-

puts and outputs are dependent on the particular model. 
The control unit is the part of the simulator imple-
mented in hardware. Corresponding to the data stored in 
the RAM it provides control signals and data to the 
simulated model. It is composed of different states. The 
initial state wait reads the control register (address: 
0x00) until bit 0 changes. In this case state lock sets bit 
3 in the control register to prevent the software from 
reading invalid values or sending new commands to the 
control unit. Afterwards the hierarchical state read 
reads the variables and hands them over to the model. 
Also, a maximum simulation time is read from a certain 
register in the RAM. The state exc simulates the model 
for one time step and increases the time by one. The 
state continue decides if the simulation can be carried 
on or not. The break conditions are the simulation time 
and modified variables. Afterwards the state write 
writes back the results and the simulation time. After 
resetting bit 3 in state unlock the control unit returns 
to the initial state and starts a new cycle. The structure 
of the control unit arises from the requirements of the 
distributed simulation and the model. JStateSim requires 
the control unit to simulate the model to a certain time. 
If the output variables change, the simulation must be 
canceled and the new values and time stamp must be 
handed over to the control process. In order to describe 
these requirements in VHDL finite state machines are a 
recommended choice. The state actions and conditions 

are VHDL statements. The encircled numbers at the 
beginning of the outgoing transitions wait and con-
tinue represent the priorities. In figure 11 only one 
variable is checked exemplarily. The decision to write 
the status of the control unit in a status bit can be re-
placed in the future by an implementation of an inter-
rupt mechanism for the FPGA on the RP.2002. 

CONCLUSION 
A platform independent co-simulation framework has 
been presented that allows for simulation acceleration 
by emulating a system using FPGAs. A requirement for 
executing a co-simulation are appropriate partitioned 
models, so that each participant is as efficient as possi-
ble, and the additional communication overhead in-
duced by distributing a model remains as small as pos-
sible. Therefore, a proceeding for the partitioning of 
Statecharts has been suggested that integrates proven 
partitioning algorithms for logic circuits. Another way 
to increase the simulation speed is using dedicated 
simulators like JStateSim with optimistic synchroniza-
tion protocols as an option. Since the framework has 
been designed in a flexible way, it can be extended to 
support also continuous systems. Both will be investi-
gated in the future as well as the supported Statechart 
features of JVHDLGen extended. 
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