
PARTITIONING AND FPGA-BASED CO-SIMULATION OF STATECHARTS

Rico Dreier
Georg Dummer
Guoxing Zhang

Klaus D. Müller-Glaser
FZI Forschungszentrum Informatik (Research Center for Information Technologies)

Department of Electronic Systems and Microsystems (ESM)
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

E-mail: dreier@fzi.de

KEYWORDS
Partitioning, FPGA, Co-Simulation, Statecharts, VHDL
Code Generation.

ABSTRACT
With the rising complexity and distribution of integrated
circuits and embedded systems, the requirements for
their development increase as well. Above all, the veri-
fication of a large design proves to be the bottleneck of
a conventional computer-based simulation in the design
flow, requiring several hours to several days. A possible
approach to accelerate a simulation is to process differ-
ent events on several processors at the same time. As-
suming a one-processor-architecture, this allows real
concurrency of the execution. In a second step the
model or a part of the model is executed on reconfigur-
able hardware. This method is marked by the unique
costs of partitioning but takes advantage of the signifi-
cantly higher execution speed and real parallelism on
one chip. This paper presents a framework for a Field
Programmable Gate Array (FPGA) based co-simulation
of electronic systems as well as an efficient partitioning
strategy for Statecharts as a basis for co-simulation. An
FPGA based simulation acceleration and the Statechart
simulator JStateSim have been developed at FZI/ESM
as well as the tool JVHDLGen that enables Very high
speed integrated circuit Hardware Description Language
(VHDL) code generation out of Statecharts, considering
also concurrent charts.

INTRODUCTION
Dependent on the level of abstraction and the different
views, a model can be described in different forms.
Finite State Machines (FSM) are suitable to specify the
behavior of discrete event systems. Extended FSM ad-
ditionally introduce the concept of state hierarchy, con-
current states and broadcast. In order to model a com-
plex behavior, Harel extended finite state machines by
Statecharts including concepts like combination of
Mealy and Moore machines (hybrid state machine),
conditions, hierarchical states, history junctions, concur-
rent states and broadcast (Harel 1987).
The CASE tool MATLAB/Simulink/Stateflow (The
Mathworks) is used to work on Statecharts, starting
from the point, where the model or a part of the model
shall be mapped to hardware and then embedded into

the simulation. Stateflow is a graphical extension for
Simulink and allows the modeling and simulation of
state machines (as for example BetterState (Wind River)
(Stingl and Dreier 1999)). In contrast to Simulink sys-
tems, Stateflow is event triggered, which means that a
chart is only processed if a previous defined event oc-
curs. Inside a Simulink model a Stateflow diagram is
represented by a Stateflow block. A model can have
several of them that can communicate through its inter-
face. A Stateflow machine is defined as the set of all
Stateflow blocks in a model. During simulation, signals
can be exchanged with Simulink. The Stateflow concept
extends Harel-Statecharts, e.g., by junctions (allow
representing logical structures such as a for loop),
scopes (to define the valid scope for events and data),
directed event broadcasts (allows sending an event ex-
plicitly to a given state), implicit events and condition
actions (executed, if the condition is evaluated as true)
(Dreier et al. 2001).
The simulation acceleration is based on the integration
of a hardware supported simulation (emulation) in a
heterogeneous network of multiple simulators. Java
Remote Method Invocation (RMI) is a mechanism hid-
ing this from the user. It is designed as client-server
architecture between local and remote objects. The
communication between both is taken over and almost
completely hidden by RMI. In order to accomplish a
distributed simulation, the model must be partitioned
into several concurrently simulated submodels. Each of
them is executed by an own simulator. Goal of the par-
titioning is to maximize parallel execution and to mini-
mize the communication costs at the same time. Fur-
thermore, the static load balancing and the respective
synchronization of the simulators are taken into account
(Mehl 1994). Since Statecharts have a complex seman-
tic, they cannot be converted directly into graphs, like
logic circuits. Possible partitions, the cost of computa-
tion per partition and the communication between the
partitions must be analyzed apriori. Then, the State-
charts are modeled in hypergraphs, so that partitioning
algorithms, that have been proved useful for logic cir-
cuits, can also be applied to Statecharts.

PARTITIONING OF STATECHARTS

Heuristic Iterative Partitioning Algorithms
The algorithm of Kernighan and Lin (KL) (Kernighan
and Lin 1969) is an algorithm of bi-partitioning. KL
begins with an arbitrary partitioning and exchanges the
nodes from the two partitions in pairs, as long as the cut
size can be reduced. The KL algorithm treats only nodes
with uniform weights, and the size of a partition is
fixed. This algorithm cannot be used for partitioning of
hyper graphs. The algorithm of Fiduccia and Mattheyses
(FM) (Fiduccia and Mattheyses 1982) is an extension of
the KL algorithm. The FM algorithm permits the
movement of single nodes between partitions. Thus, the
size of a partition is changeable. With the FM algorithm
the selection of the node from those with the same gain,
which can be moved next, is arbitrary. Krishnamurthy
(Krishnamurthy 1984) introduced the concept of "level
gains", in order to distinguish between such nodes ac-
cording to their gains from later movements. Sanchis
(Sanchis 1989) extended the concept of Krishnamurthy
to a k-way partitioning (K-FM). A node is marked as
free, if it is not moved in a pass of the algorithm. Oth-
erwise it is marked as locked. The K-FM algorithm of
Sanchis can be used for an arbitrary number of parti-
tions and nodes with different weights.

All iterative methods specified above model a circuit as
non-directional graph or hyper graph, without consid-
ering the direction of signals. In some situations the
information about the direction of signals is useful, in
order to improve the partitioning (Cong et al. 1994,
Chen et al. 1997).

Partitioning of Logic Circuits
Before partitioning a logical circuit, its net list is first
modeled in graphs. The partitioning of logical circuits
can then be realized as partitioning of graphs or hyper
graphs. The partitioning of a hyper graph is formalized
in (Lengauer 1990). If a given net list contains sequen-
tial components (e.g., flip-flops), such components must
be removed first. After the acyclic k-way partitioning
these components are assigned to suitable partitions on
the basis of the same computing load as well as the
connections between sequential components and parti-
tions.

A logical block is modeled with nodes and a net be-
tween logical blocks with directed hyper edges. The
primary inputs and outputs are represented also with
nodes. Figure 1 shows a logic circuit with four gates
modeled in MATLAB/Simulink.

Figure 1: Logic Circuit with Four Gates

The corresponding hyper graph is illustrated in figure 2.
For a hyper edge an additional node is added. Here it is
marked by a black point. The directed edges between
the nodes of a logic gate and the node of a hyper edge
represent the input and output nodes of this hyper edge.

Figure 2: Directed Hyper Graph of the Circuit in Fig. 1

Analysis of a Stateflow Model
Because Statecharts have a complex semantic, they
cannot be converted directly in graphs as it is possible
with logic circuits. The possible partitions, the compu-
tation cost of a partition and communication between
partitions must be analyzed first, which is based on the
analysis results of the analyzed Statecharts modeled in
hyper graphs. Partitioning algorithms for logic circuits
can then be used for the partitioning of Statecharts. The
concurrency of a distributed simulation depends on the
concurrency of the model. A Stateflow machine can
contain several charts. Within Statecharts the concur-
rency depends on the state hierarchy. Figure 3 shows a
Stateflow machine with two chart blocks. The two
charts are illustrated in figure 4 and figure 5.

Figure 3: Stateflow Machine with two Statecharts

The state hierarchy can be represented by a tree,
whereas the root node is the node for the Stateflow
machine. The successors are the nodes for charts. The
concurrency of a chart is defined as the number of sub-

states of the chart, if the chart is a state with AND de-
composition. If the chart is a state with XOR decompo-
sition, its concurrency is defined as 1, in other words
this chart can be simulated on one simulator only.

Figure 4: Chart1 of Stateflow Machine in Figure 3

The concurrency of a model is the sum of the concur-
rencies of all its charts. The maximum number of parti-
tions of a model is decided by its concurrency.

Figure 5: Chart2 of Stateflow Machine in Figure 3

Since only one substate can be active in a state with
XOR decomposition at each time, the partitioning of a
state with XOR decomposition will produce no paral-
lelism. The possible partition can be either a chart or
substates of a chart, depending on whether the chart has
XOR or AND decomposition. Figure 6 illustrates the
state hierarchy of the model shown in figure 3. The
node m represents the Stateflow machine; the nodes c1
and c2 represent the chart Chart1 and Chart2. The
concurrency of the Statecharts Chart1 and Chart2 are
thus 2 and 3. Therefore, the concurrency of this model is
5. Thus, this model can be divided in 5 partitions at
most.

Fig. 6: State Hierarchy of a Model with Concurrency 5

The cost of computation of a model with Statecharts is
mainly caused by the execution of state actions and
transitions. It is assumed that all transitions and state

actions are executed with the same frequency, the com-
putation cost of each transition and state action is the
same, and the computation cost of a state is defined as
the sum of the number of its state actions and transi-
tions. Since transitions between states can exist in dif-
ferent hierarchy levels, the computation costs are cal-
culated in two steps. First, local computation costs are
calculated. The local computation costs of a state are
defined as the sum of the number of state actions and
the number of transitions between direct substates. This
result will be marked first as weight of a node in the
state tree. The final computation costs of a state are
calculated by accumulating the final costs of its direct
substates and its local costs. This calculation is accom-
plished gradually from the leaves to the root. For the
leaves the local costs are also the final costs. Figure 6
shows, how the computation costs of the model given in
figure 3 are calculated. Since the root node does not
contain state actions and transitions, its local costs are 0.
The substates A and B of the state s0 each contain a
state action. The state s0 contains 3 transitions includ-
ing the default transition. The final computation costs of
the state s0 are the sum of the costs of the nodes A, B
and its local costs 3.

Communication Costs Between Partitions
The partitions of states or charts must communicate
with each other, if the events generated by a partition
need to be passed on to another partition, or if two par-
titions access common variables. Therefore, the data
objects exchanged between two partitions differ from
events and variables. A data object can be accessed
either by a state action or a transition. In order to deter-
mine the communication costs between partitions, a
communication graph for a partitioning is defined. A
communication channel between two partitions P1 and
P2 exists if one of the following conditions is fulfilled:

• A variable will be changed by a state action or
transition in P1, simultaneous it is operand of
an expression of state action or transition in P2.

• A normal or implicit event in P1 must be sent
via broadcast to P2.

• A directed event of a transition in P1 is sent to
another transition in P2.

• P1 must inform P2 about the validity of a state
within P1 as a state condition.

Figure 7: Communication Graph between Partitions

The nodes of the communication graph represent a pos-
sible partition. If one of the conditions specified above
is fulfilled, a directed edge is added from P1 to P2 as a
communication channel. It contains all data objects that
shall be sent from P1 to P2. It is assumed that all data
objects are exchanged with the same frequency between
the partitions and the communication costs between two
partitions in one direction are defined as the number of
different data objects. Figure 7 shows the communica-
tion graph of the model given in the last section.

FPGA-BASED CO-SIMULATION

Conversion to VHDL Code
In order to execute a MATLAB/Stateflow model on an
FPGA it must be converted to a hardware description
language. After the synthesis it can then be executed on
an FPGA and merged into a distributed simulation.

SF2VHD (Camera 2001) is a MATLAB M-script that
uses the MATLAB API and translates graphically rep-
resented Statecharts to a textual representation in
VHDL. The VHDL code is output as character string by
the individual functions of an M-script. A second M-
script serves for the syntax conversion of the action
label into appropriate VHDL operations. A powerful
language like Statecharts does not map easily into
hardware. Therefore, not all possible expressions are
considered in SF2VHD. An important constraint re-
garding Stateflow designs is that no AND decomposi-
tion is supported, i.e. states can only have XOR decom-
positions. In JVHDLGen, that was developed in Java at
FZI/ESM, the functionality has been extended by states
with AND decomposition. JVHDLGen bases on a
parser that is capable to parse MATLAB (mdl) files.
The objects are converted to Java objects.

In Statecharts concurrently executed states can commu-
nicate with each other by broadcast or common data. In
VHDL concurrency is supported by processes. Proc-
esses can communicate through signals. In VHDL'93
the data type shared variable can be used for
communication as well as the instruction wait for syn-
chronizing processes. An alternative method is putting
concurrent states into one process that is executed in
one clock cycle.

An enumeration type is defined for each concurrent
state. The possible values of this type are the names of
the basic states. A virtual state is additionally added, in
order to represent the source state of the default transi-
tion. A state inside the virtual state means that this state
is inactive, too. Since the history junction is not imple-
mented, yet, all default transitions of the concurrent
states are executed when entering the appropriate state.
When leaving the state with AND decomposition all
concurrent substates are set to the respective virtual
state. Thus, with the next entry to the state with AND
decomposition, the default transitions are always exe-
cuted. In order to easily identify state names, the names
of all of its super states are added as a prefix. In figure 8

an example Statechart is shown that can be converted to
VHDL code by JVHDLGen.

Figure 8: Chart with Nested AND Decomposition

Development Environment and Tools
The rapid prototyping system RP.2002 (Kühl 2002) is
used as an evaluation platform for the development of
FPGAs as well as FPGA Advantage of Mentor Graph-
ics. The CORE generator of Xilinx supplies adjustable
COREs which are optimized for Xilinx FPGAs. A fea-
ture of the RP.2002 is the extensive use of standard
hardware (COTS) components. This does not only lead
to low costs, the system can be also easily integrated
into an existing network and is suitable for distributed
simulation. A backplane integrates a PCI controller and
an FPGA and allows the access of external actuators
and sensors. As operating system Linux is used together
with the real-time application interface RTAI.
By means of special blocksets, such as SystemGenerator
(Xilinx) and AccelFPGA (AccelChip) as well as the tool
JVHDLGen VHDL code can be generated from MAT-
LAB/Simulink/Stateflow models for the configuration
of an FPGA. AccelFPGA requires fixed point MAT-
LAB or Simulink files as input. The model either has to
be developed in this form or must be transformed to it
manually. MATLAB models offer the opportunity to do
this automatically by executing an auto quantize com-
mand. Additionally, compiler directives must be given
to specify which part of the model shall be converted to
VHDL. They provide model specific knowledge for the
compiler and offer the opportunity for optimization.
AccelFPGA generates a VHDL description on register
transfer level out of the modified Simulink or MATLAB
design, which can then be synthesized and simulated.
MATLAB/Stateflow blocks are not supported. Similar
limitations exist for SystemGenerator. Therefore, the
tool JVHDLGen is used, together with the tools from
Mentor Graphics and Xilinx.
JStateSim allows a distributed discrete event simulation
of Stateflow charts, that are similar to Harel Statecharts
(Harel 1987), analogue to MATLAB/Stateflow, but ad-
ditionally offers the possibility for a distributed simula-
tion using conservative or optimistic protocols
(Schmerler et al. 1997, Fujimoto 2000). It is imple-
mented in Java and is for that reason platform inde-
pendent. The communication is realized using RMI.
Simulator instances can be coupled as many as desired.

Transition notations are restricted to the following for-
mal description:

• if or if/then
• if := [condition] or event
• then:= (event)* and/or (equa-

tion)* (separated by ";")
• equation := VK ° VK
• VK := variable or constant
• ° := + or –

In order to use JStateSim as part of a distributed simu-
lation with hardware acceleration, a part of the simula-
tor was modified so that the hardware is completely
hidden from the other simulators and the control proc-
ess. In this case the simulator does not get a model as
input, since it is loaded while the FPGA is configured.
Otherwise the behavior is equivalent to that of an in-
stance of the simulator of JStateSim, but can only be
started with according hardware (FPGA) and software
(library for accessing the FPGA). The communication
between the object instances of JStateSim as well as the
CPU on the FPGA rapid prototyping system with the
other simulators that are involved in the simulation is
taken over by Java RMI.

Simulation Structure and Design Flow
The simulation structure is shown in figure 9. The com-
munication between the C interface of MATLAB (S
function) and Java is done using the Java Native Inter-
face (JNI). A control process communicates with the
RMI part of the simulators that are implemented in Java.

Figure 9: Simulation Structure

A bidirectional connection between MATLAB and the
RP system is also possible since the interface is the
same as between MATLAB and JStateSim. The JNI is
used as an interface between Java and the hardware as
well as for the communication between JStateSim and
MATLAB. It allows Java code running in a Java Virtual
Machine (JVM) to operate with libraries written in
C/C++.
The VHDL design flow (figure 10) is divided into three
fields: creation, implementation and verification. The
starting point of each design is its specification. In
VHDL this could be done on abstraction layers like al-
gorithms and function blocks or converted to from a
non-formal description. Already on this layer the cor-
rectness of the design should be tested by logic simula-
tion. This high level description is translated to the reg-

ister transfer level (RTL) and handed over to the synthe-
sis tool. The supported language by this tool is the first
of the dependencies appearing in the tool chain. The
synthesis itself converts the VHDL RTL description to a
mostly technology independent logic description, e.g.,
by using special features of a certain FPGA; even the
RTL code is not target independent. This step is fol-
lowed by place and route, which maps the design to the
technology of a certain vendor. At this point, precise
timing information is available in SDF (standard delay
format) and a timing simulation is possible to verify
whether all constraints are met. If an FPGA is the target
platform, a bitstream for its configuration is generated.
The modules are placed on the FPGA and are intercon-
nected.

Figure 10: VHDL Design Flow

Implementation of the Interfaces
A JNI shared library provides an interface to the part of
the simulator running on the FPGA. It translates and
forwards the messages from JStateSim to the kernel
module. Therefore, two FIFOs are installed for commu-
nication purposes and cleared at the end of a communi-
cation step. A kernel module sets up the communication
between the simulator and the FPGA and uses the func-
tionality of the PCI-driver and the FIFOs. The kernel
module offers functions for the initialization and
cleanup which are executed after loading and before
unloading the module. The other functions provide read
and write access to the dual port RAM and commands
like model reset and execution of a simulation step.
These recurrent operations are implemented at this low
level to reduce the communication overhead. The bus
interface is the link between the local bus, the part of the
simulator running, and the FPGA. Basically, it consists
of a clock former and a dual-port RAM, instantiated
using the Xilinx CORE generator. This type of RAM is
used because the local bus and the simulator have to
read and write simultaneously to the RAM.

RP System with
FPGA onboard

MATLAB

JStateSim:
n. instance

Control
process

Specification

Design

Construction
phase

Logic
simulation

Verification

Synthesis

Place &
Route

Implementation

Timing
simulation

VHDL

RTL

VHDL - RTL

Analysis

FPGA -
configuration

Bitstream

EDIF

VHDL-Gate

SDF
Analysis

Control Unit
The control unit (figure 11) makes data available and
controls the MATLAB model. Its design should be
flexible and serve models without significant changes as
much as possible. The simulated model is attached to
the control unit. By default, it offers a clock input as
well as a synchronous reset and enable input. Data in-

puts and outputs are dependent on the particular model.
The control unit is the part of the simulator imple-
mented in hardware. Corresponding to the data stored in
the RAM it provides control signals and data to the
simulated model. It is composed of different states. The
initial state wait reads the control register (address:
0x00) until bit 0 changes. In this case state lock sets bit
3 in the control register to prevent the software from
reading invalid values or sending new commands to the
control unit. Afterwards the hierarchical state read
reads the variables and hands them over to the model.
Also, a maximum simulation time is read from a certain
register in the RAM. The state exc simulates the model
for one time step and increases the time by one. The
state continue decides if the simulation can be carried
on or not. The break conditions are the simulation time
and modified variables. Afterwards the state write
writes back the results and the simulation time. After
resetting bit 3 in state unlock the control unit returns
to the initial state and starts a new cycle. The structure
of the control unit arises from the requirements of the
distributed simulation and the model. JStateSim requires
the control unit to simulate the model to a certain time.
If the output variables change, the simulation must be
canceled and the new values and time stamp must be
handed over to the control process. In order to describe
these requirements in VHDL finite state machines are a
recommended choice. The state actions and conditions

are VHDL statements. The encircled numbers at the
beginning of the outgoing transitions wait and con-
tinue represent the priorities. In figure 11 only one
variable is checked exemplarily. The decision to write
the status of the control unit in a status bit can be re-
placed in the future by an implementation of an inter-
rupt mechanism for the FPGA on the RP.2002.

CONCLUSION
A platform independent co-simulation framework has
been presented that allows for simulation acceleration
by emulating a system using FPGAs. A requirement for
executing a co-simulation are appropriate partitioned
models, so that each participant is as efficient as possi-
ble, and the additional communication overhead in-
duced by distributing a model remains as small as pos-
sible. Therefore, a proceeding for the partitioning of
Statecharts has been suggested that integrates proven
partitioning algorithms for logic circuits. Another way
to increase the simulation speed is using dedicated
simulators like JStateSim with optimistic synchroniza-
tion protocols as an option. Since the framework has
been designed in a flexible way, it can be extended to
support also continuous systems. Both will be investi-
gated in the future as well as the supported Statechart
features of JVHDLGen extended.

REFERENCES
Camera, K. 2001. "SF2VHD: A Stateflow to VHDL

Translator". Master Thesis, Department of Electri-
cal Engineering and Computer Science, R. Broder-
sen, University of California, Berkeley, California,
USA.

Chen, Y.; V. Jha; and R. Bagrodia. 1997. "A Multi-
dimensional Study on the Feasibility of Parallel

Figure 11: Control Unit

Switch-Level Circuit Simulation". 11th Workshop
on Parallel and Distributed Simulation PADS '97.

Cong, J.; L. Zheng; and R. Bagrodia. 1994. "Acyclic
Multi-Way Partitioning of Boolean Networks". De-
sign Automation Conference 1994, 670-675.

Dreier, R.; E. Sax; and K.D. Müller-Glaser. 2001. "Re-
quirements and State of the Art of Automated
Software Development for Embedded Systems
Based on CASE Tools". Proc. of IEEE Design,
Automation and Test in Europe Conference 2001,
Munich, Germany, 44-48.

Fiduccia C. and R. Mattheyses. 1982. "A Linear Time
Heuristic for Improving Network Partitions".
ACM/IEEE Design Automation Conference 1982,
175-181.

Fujimoto, R.M. 2000. "Parallel and Distributed Simu-
lation Systems". John Wiley & Sons, Inc.

Harel, D. 1987. "A Visual Formalism for Complex
Systems". Science of Computer Programming, No.
8, 1987.

Kernighan, B. and S. Lin. 1969. "An Efficient Heuristic
Procedure for Partitioning Graphs". The Bell Sys-
tem Technical Journal, 1969, 291-307.

Krishnamurthy, B. 1984. "An improved min-cut algo-
rithm for partitioning VLSI networks". IEEE
Transactions on Computers, 1984, 438-446.

Kühl, M. 2002. "Rapid-Prototyping System RP.2002".
developed at the Institute for Information Process-
ing Technology, University of Karlsruhe, Karls-
ruhe, Germany.

Lengauer, T. 1990. "Combinational Algorithms for
Integrated Circuit Layout". John Wiley & Sons,
Inc.

Mehl, H. 1994. "Methoden verteilter Simulation, Vie-
weg-Verlag". Braunschweig, Germany.

Sanchis, L. 1989. "Multiple-Way Network Partitioning".
IEEE Transaction on Computers, 1989, 62-81.

Schmerler, S.; Y. Tanurhan; and K.D. Müller-Glaser.
1997. "Predictive Time Warp". 11th European
Simulation Multiconference ESM '97, Istanbul,
Turkey.

Stingl, T. and R. Dreier. 1999. "Modellierung und
Simulation mit Zustandsautomaten - Schwerpunkt
BetterState". ASIM Fachtreffen 1999, Aachen,
Germany.

AUTHOR BIOGRAPHIES
Rico Dreier was born in Sinsheim, Ger-
many. He received the Dipl.-Ing. degree in
electrical engineering in 1997 from the
Technical University of Karlsruhe, Germa-
ny. Since 1998 he works at the FZI Re-
search Center for Information Technolo-

gies, Dept. of Electronic Systems and Microsystems. He
participated in projects in the area of MPEG-4 stan-
dardization, CASE methods and analysis of real time
operating systems. His research interests include simu-
lator coupling and distributed simulation of electronic
systems.

Georg Dummer was born in Wittenberg,
Germany. Since 1997 he studies computer
science at the University of Karlsruhe,
Germany. During the study he focused on
the design of embedded systems. He is now
completing his degree with a diploma the-

sis.

Guoxing Zhang was born in Shanxi,
China. He received his BS degree in elec-
trical engineering from the Tongji Univer-
sity in Shanghai in 1991. 1999 he joined the
company NEC in Tianjin, China. Since
1999 he studies computer science at the

University of Karlsruhe, Germany, and is now working
on his diploma thesis.

Klaus D. Müller-Glaser received the
Dipl.-Ing. and Dr.-Ing. degree in 1972 and
1977 from the University of Karlsruhe,
Germany. From 1977 to 1986 he worked
for Siemens AG, Synertek Inc., Honeywell
Inc. and Bell Labs, Allentown, PA, before

he became responsible for setting up the first commer-
cial U.S. AT&T ASIC Design Center in Sunnyvale, CA.
In 1986 he was appointed Full Professor at the Univer-
sity of Erlangen-Nürnberg, Germany, in April 1993 he
became Full Professor and Director of the Institute
for Information Processing Technologies, Department
of EE and IT, University of Karlsruhe. He is a Director
of the Computer Science Research Center (FZI) in
Karlsruhe. From 1996 till 2002 he served as president of
FZI, currently he is the dean of the department.

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

