

PROPOSAL OF A FRAMEWORK FOR
PRODUCTION PLANTS REMOTE CONTROL:

A PRELIMINARY TEST CASE

Romeo Bandinelli, Mario Rapaccini
romeo.bandinelli@siti.de.unifi.it,

rapaccini@ing.unifi.it
Università di Firenze

Dip. di Energetica "Sergio Stecco"
Sez. Impianti e Tecnologie Industriali

Via Cesare Lombroso 6/17
50134 Firenze

Italy
tel +39-055-4796722
fax +39-055-4224137

Sergio Terzi, Marco Macchi
sergio.terzi(marco.macchi)@polimi.it,

 Politecnico di Milano
Department of Economics, Industrial and

Management Engineering
Piazza Leonardo da Vinci 32

20133 Milano
Italy

tel +39-02-23992803
fax +39-02-23992700

KEYWORDS

Parallel and Distributed Simulation, High Level
Architecture, Inter Process Communication, Remote
Factory

ABSTRACT

This paper illustrate a proposal of a framework for
production plants remote control. The architecture has
been developed under HLA-RTI environment, with the
use of <next event> as paradigm for time management.
XML as been used as the formalism for both
information coding and non-persistent data-structuring,
while persistent objects are been represented as HLA
objects. The proposal framework can be used in
conjunction with any COOTS simulator software, and
has been tested in a local environment with Simple++
simulator software.

1 INTRODUCTION

The continuous increase of ICT applications is causing
a radical change within the manufacturing industry.
The effects on structures and processes are visible to
everybody, for either world-wide enterprises or local
industries. Summarising, this process is determined by
some common issues: globalization (activities have to
be managed with reference to a global environment),
interconnection (coordination is possible through
structured communications among remote groups) and
e-manufacturing (industrial processes are computer-
based controlled). Technological drivers occurring in
this development are focusing significant investments,
especially where headquarters and productive sites are
spread in a wide territory, thus having the necessity for
a narrow integration. In such this distributed
environment, the main decision management process
might be deployed in a distributed way, since to
preserving the independence of each actor from one
side, but also in order to provide a coherent creation of

value. Within this distributed scenario, tools for
performance analysis and supply-chain processes
design/management are specifically required.

With reference to the mentioned issues, the paper aims
to illustrate a proposal of a framework for production
plants remote control to be adopted for the distributed
management and coordination of productive nodes; in
particular, this objective is achieved by the use of web-
based distributed simulation. In order to provide a
coherent presentation of the work, the paper will be
organized as follow: § 2 introduces the research idea
where the framework was developed and how the work
was conducted; § 3 analyses the available technologies
adopted into the proposed framework and illustrates the
proposed framework; § 4 describes the preliminary test
case developed according to the proposed framework;
§ 5 reports some conclusions and highlights further
developments.

2 THE RESEARCH IDEA

The present paper aims to illustrate a preliminary
research work conducted in the area of remote factory
control adopting a distributed simulation approach.
This work was elaborated thanks to the contributions
and the knowledge of the international research group
of fourth Special Interest Group (SIG4) of the IMS-
NoE community [8], specifically interested in the
establishment of a remote scheduling factory control.
Within the SIG4 community, the whole research idea is
generally named Remote Factory project.

The main idea (Fig. 1) of the Remote Factory project
deals with the establishment of a virtual arena,
physically provided by web-based and parallel and
distributed technologies, where one industrial plant
could be emulated/simulated in terms of its physical
resources, while the PP&C logics are reproduced in a
detached environment. Thank to this separation and to
simulation technologies, over an emulated plant could
be executed and tested more and more PP&C logics, in

order to identify the best solution using a kind of a
benchmarking approach. In such a way, PP&C experts
of the enterprise headquarter could be able to identify a
priori PP&C solutions for each industrial plant and for
the whole SC, avoiding inefficient local decisions1.

The present paper, in particular, concerns with a
preliminary research work freely carried on by two
SIG4 members in order to investigate one efficient
solution for the adoption of the distributed simulation
approach: University of Florence (UNIFI) and
Politecnico di Milano (POLIMI).

Figure 1 – Remote Factory idea

The developed distributed architecture was tested on a
simple industrial test case, where one industrial plant
was emulated in a physical model (PM) connected, in a
distributed simulated environment, to a logical control
model (LM), based on the protocols-negotiation multi-
agent logic by Solberg and Lin [9].

3 THE PROPOSED ARCHITECTURE

As mentioned, the Remote Factory idea deals with the
adoption of a PDS (Parallel and Distributed
Simulation) environment, where two separated models
(PM and LM) could interact.

3.1 Requirements for an architecture for remote
factory control

Establishing a remote factory control means to apply a
remote management over a production plant, managing
PP&C decisions. Therefore, a remote control means, at
first, to define which kind of information might flow
from one Control System (reproduced into a logical
model - LM) to the Production Plant (emulated in a
simulation environment) and, if it is needed, vice versa

1 The Remote Factory idea deals also with problems different from
the remote headquarter control; in particular, at the present the main
interest of the Remote Factory project (and of the SIG4 group) deals
with the establishment of such a benchmarking service for solving
the dichotomy which afflicts the world of scheduling research, where
PP&C experts are totally detached from industrial reality; other
information about this could be read in [8].

(figure 2).

Physically, a control system defines, using its internal
rules and logics, which kind of production plan might
be performed by resources of the plant (e.g. work-
centres, docks, lines) in order to satisfy a due
performance (e.g. due-date timing). Work of the
control system is to define job scheduling (sequencing,
loading, dispatching), communicating its taken
decisions to plant resources in terms of Tasks to be
performed (e.g. “Job X in machine Y, for Z time-
units”). Defined Tasks can be communicated one or
more times, depending to the scheduling system
ontology. In fact, traditional scheduling tools elaborate
only one general production plan for a due production
time period (e.g. for one shift, or one day). On the
contrary, advanced scheduling solutions (e.g. Multi-
Agent Systems MAS – see par. 4, or Genetic Algorithm
GA) try to continuously elaborate a new production
plan following what happens into the plant, re-defining
scheduling tasks.

By the production plant side, a different kind of
information might be achieved, corresponding to the
resources status description. This information is
required for setting up the scheduling algorithms of the
traditional tools, while the most advanced solutions
(e.g. MAS) need it continuously, in order to follow up
production plant history.

LM - Control Logic

PM- Production Plant

Production Plan
(Task) Resources status

Figure 2 – Remote control information exchange

This way, the needed architecture for remote factory
control might:

(i) enable a distributed (simulation) environment for
remote management,

(ii) consider the different kind of information flows,

(iii) provide to each model (PM and LM) the requested
elements (in terms of IN and OUT flows),

(iv) be able to manage diverse sort of models in terms
of plant dimensions (number of resources), for
PM, and scheduling ontology, for LM.

In the next paragraph, the proposed architecture will be
illustrated in terms of technological solutions.

3.2 Technical foundations of the architecture

The needed PDS distributed environment was
identified in HLA (High Level Architecture, [12]). As
known, HLA is the most important PDS framework,
recently defined as a IEEE standard, that was originally
developed by the U.S. Department of Defence for

Emulation of the
plant

PP&C
Logic

military purposes. Within the HLA framework, a
distributed simulation is accomplished through a
“federation” of concurrent “federates” (distributed
models), interacting between themselves by means of a
shared data model, specified in a proprietary language
(OMT - Object Modelling Template) and federation
services (basically time and data distribution
management services). The federation services are
provided by the Run Time Infrastructure (RTI)
software tool, based on the HLA interface
specifications. HLA has been chosen instead of other
framework like CORBA [1], RMI [7] or DEVS [3]
because of its robustness and the mature time
management approach. Moreover, HLA has been
adopted by UNIFI and POLIMI in a previous project
[10]. Simple++ [5] has been chosen as simulation
software, either for the physical model than for the
logical one. Simple++ has been chosen because of its
diffusion among COOTS (Commercial Off Of The
Shelves) simulation tools, representing a typical
environment that a future Remote factory user could
adopt, with a complete support for object oriented
programming and a user-friendly interface.

As known, nowadays totally HLA-compliant
simulator’s commercial software doesn’t exist. So, it’s
not advisable to define an architecture where a totally
HLA-compliant simulator is needed, because this
choice would force the use of a specific simulator
written in C++ or Java, and not a commercial tool. For
these reasons the introduction of a component between
the simulator and HLA environment was needed. The
realization of this add-on could be done according two
ways. The first one can be summarized in the definition
of a Delegated Simulator module. This module is
responsible for all the logic of information exchange
between federates. The second solution proposes the
introduction of a software “living” between the
simulator and the RTI. This software, called Proxy, has
the responsibility to guarantee the communication
between the RTI environment and the simulator, and
vice versa2. For this work, the second way has been
chosen, with the use of a Proxy, thanks to the
flexibility that it provides. The Proxy, written in java,
was responsible for the information exchange between
the simulator and the RTI. While the simulator has a
synchronous way to communicate by TCP-IP, RTI has
an asynchronous way: the Proxy had to store
information coming from RTI and transmit it to the
simulator as soon as possible and vice versa.

A clear separation from information regarding
persistent objects (i.e. SM work centres’ state) and not-
persistent objects (i.e. production plan) has been done.
While the firsts have been implemented as RTI objects,
instantiated at the beginning of the simulation and
destroyed at the end, the second one has been
developed as HLA interactions. This choice allows an

2 More information about “Delegate Simulator” and “Proxy” can be
found in [11]

easier management of the time, with an improvement
of performances in comparison to an architecture
without interactions and a correct time-sequence
information exchange.

Moreover, this proposal aims to differentiate the
communications from the PM to the LM and vice
versa. In fact, while the firsts ones have been
transmitted as specific values of the HLA objects’
attributes, the second ones have been implemented
with HLA interactions, with the use of XLM as the
formalism for both information coding and not-
persistent objects data-structuring. In the proposed
architecture, XML is used in order to communicate the
production plan (from the controller to the plant),
production executions and statistics (from the plant to
the controller). For this reason, a C++ library for
coding and encoding XML strings has been written and
loaded into Simple++.

Figure 3 – Overall vision

An overall vision of the architecture is summarized in
figure 3.

The XML schema used in order to communicate
production plan is reported in figure 4.

<?xml version="1.0" standalone="yes"?>
 <task>
 <load>
 <lot_ID>1</lot_ID>
 <processor_ID>54CE</processor_ID >
<start_time>1:00:00.0000</start_time >
 <duration>10:00:00.0000</duration>
 <job_ID>8</job_ID>
 </load>
…
</task>

Figure 4 – XML schema for production plan

The use of XML inside an HLA environment extends
generality of contents of messages; moreover, adding
more lot-related information would be very easy.

Physical
system

Control
system

Interface for CS

Interface for PS

RTI

Simple++ Model

R R T T I I A A m m b b

P P r r o o x x y y

P P r r o o x x y y

Simple++ Model

4 THE TEST CASE

As a test-case, we adopted an advanced-scheduling
MAS solution, remotely controlling a shop-floor. Thus,
the test-case was composed by two main components:
(i) the shop-floor plant simulation, and (ii) the shop-
floor MAS control logic, implemented with Simple++.

This architecture will be described starting from the
shop-floor, and dividing it into three areas: (i) the shop-
floor structure, (ii) the shop-floor control flows and (iii)
the shop-floor control execution.

4.1 The shop-floor structure

 loading

station

lathe 1

cutter 1

lathe 2

cutter 2

grinder 2

 slotter 2

grinder 1

 slotter 1

unloading
station

system buffer

Figure 5 – Shop flow structure

The shop-floor is composed by 8 stations, grouped two
by two. Each 4-station lay-out is dedicated to a specific
process, as depicted in Fig. 5.
In order to implement reusable and modular
architecture, some general-purpose classes were
developed within the PM. In fact, the class Processor
can represent four different objects:
- a buffer in,
- a buffer out,
- a native processor, able to describe any real work-

centres,
- a data storage, able to store information about

shop-orders execution.

This class was used to implement all the resources
available in the PM of the described test-case, as well
as the “system buffer”, that is a virtual buffer where
inactive jobs are moved. Other classes were used in
order to generate entities (Job and Part) and manage
material flows.

4.2 The shop-floor control flows

The PM is able to receive a production plan and to
storage it in the data storages of the work-centres.
Then, each processor analyzes the work-order
according to a FIFO logic. Moreover, statistical
information about job completion is stored to be
transmitted later to the LM.

4.3 The shop-floor control execution

According to the proposed architecture, two data flows
have been identified: the tasks flow from the PM to the
LM, and the PM system events (i.e. resource status)
from the LM to the PM.

Any occurrences relevant to production scheduling (i.e.
set-up completed, start of material loading, end of
processing, breakdown/failures of work-centre,
maintenance beginning, restoring time) were stored as
an “event”. This information were then required from
the LM, in order to either re-schedule or confirm the
production plan.

In order both to minimize clock stop and to avoid
inconsistence states of the PM, the information
transmitted during a simulation run has been
minimized. All the information used for statistics
analysis were stored into the PM and communicated to
the LM at the end of each run, while all the productions
parameters needed for scheduling were recorded into
the logical model. The flow from the PM to the LM
contains only the necessaries information of the jobs,
while the other flow contains only the update state of
the status’s attribute of each machinery.

4.4 Example of execution

At the beginning of the simulation run, the proxy
creates a number of HLA objects of type “processor”
equal to the number presented in the physical model.
During the simulation run, HLA objects are
synchronized with the real state of the PM by the
proxy. This is done by a synchronous socket between
the PM and the proxy. Every time a job is executed, the
simulation clock is stopped, and socket is opened in
order to communicate the new state of the objects.
Then, proxy communicates this updating to the other
federators with HLA <next event> time-management
logic. A typical step of the execution’s process could
be described as follows.

Every time a work activity is completed, an event that
stops the simulation clock occurs. The updated state of
the PM is communicated to the Proxy, that stores it
temporary, and then updates the RTI environment.
Since the controller subscribed the needed objects at
the beginning of the simulation run, consequently RTI
delivers information to the LM. The LM achieves all
the information to start the negotiation for the
successive working for the job that caused the stop
event. The scheduling process can be activate also by a
fictitious event generated by the PM, in order to
simulate the dynamic of the end of a scheduling

process. This is done with the introduction of a system
class (system processor), that is programmed in order
to generate an event every time a negotiation’s process
ends in the LM (depending on the contract net logics).

When these events occur, the PM causes the simulation
clock to stop, and this operation permits the PM to
receive the results of the scheduling process (task). If
the negotiation process finishes without the assignment
of any task, the LM communicates, as a result, another
fictitious event, that will occur when the next
scheduling process finishes. The tasks, that represent
the job’s order, are communicated to the PM with the
use of RTI interaction (communication class), where
the attributes (type of working, job’s identification,
working center’s identification, beginning time of the
working, working’s length) are stored as an XML
string. The presence of the system processor solve also
a logic’s weakness: during the simulation run, it’s
possible to have the PM completely free from
processing. In this state the PM doesn’t generate any
event, so the simulation clock would be never stopped,
in order to receive working order: in this case the
fictitious event solves the problem.

The proposed architecture is based on discrete-event
distributed simulation, using HLA <NextEvent>
paradigm for time management, where an unimportant
<LookAhead> value is associated to the LM, while a
<LookAhead> proportional to the predicted time for
the sheduling process is associated to the LM. As a
consequence, the PM is in time advance if compared
with the global simulation clock (federation time), this
coinciding with the LM clock. As already said, the run
is stopped when any system event happens, and status
changings are published by the PM. Then, an
authorization to go until the next event is requested to
the RTI. RTI gives the authorization after all the
messages have been delivered to the interested
federates. With this logic, the PM will not stop again
until the successive event, so it’ll not be able to receive
others tasks in the meanwhile. During this time, LM
can be:

- waiting for the following event, so waiting to go
on after the last production orders have been
executed;

- waiting for publishing production orders the PM is
going to receive.

If LM is in the state 2), the publication of the
production plan will be causing LM to go on and to
reach state 1). For both the states, when the LM’s clock
will start again, a new production’s plan will be
elaborated as a consequence of the PM status-
changing.

Figure 6 shows the way an XML string is transmitted
and the way the proxy is able to manage the <next
event> HLA command. Figure 7 shows a log made by
Simple++ about the PM production plant.

Figure 6 – Output of the proxy during the simulation

Figure 7 – Output of Simple++ order table during the simulation

5 CONCLUSIONS AND FURTHER
RESEARCHES

This paper proposes a web-based, HLA-compliant
simulation framework for production plans remote
control. Adoption of this framework lets the user to
choose any COOTS simulators for system modelling,
neither binding the simulation execution nor the
modelling procedures to a specific kind of technology.
An important aspect of this work is the generality of
the described framework. Particularly, the use of XML
as the standard for the information exchange allows
scalability and full unbinding to the users in system
modelling. Specially, we defined a standard that
differentiate communication regarding persistent
objects, like work centers, from non persistent objects,
like job orders.

Tests demonstrated the possibility and the conceptual
correctness of the architecture. Surely, a more intensive
set of tests will be useful in order to verify framework
robustness. Our tests were made in a local LAN, with a
single production plan and without stochastic elements.
Nor the internet velocity has been considered neither
the CPU performances has been tested. Even if this
standard can’t be considered fully tested, it solves some
critical issues in the distributed simulation area. Firstly,
the architecture for information exchanging among
federates solves the synchronization problem, also
recurring in previous works [4]. Then, the combined
use of HLA interaction and XML guarantees the right
sequence in the information’s arriving. Last but not
least, the modularity approach and object oriented

programming of each element of the system permit the
full separation of the information management.

As future developments, an in-depth study of the
architecture with different types of LAN would be very
interesting, in order to evaluate the effect of delay in
information delivering. It would also be hoped the
introduction of stochasticity in the physical model, in
order to evaluate it, and finally a full integration in the
Remote Factory project idea would be the natural
continuation of this work.

6 REFERENCES

[1] Zeigler, Ball, Cho, Lee, Sarjoughian, 1999,
“Implementation of the DEVS Formalism over the
HLA/RTI: Problem and Solution.
[2] Huang Xueqin, Miller John A., 22-26 Aprile
2001, “Building a Web-Based Federated Simulation
System With Jini and XML”, Simulation Symposium,
2001. Proceedings, pages 143-150.
[3] Zeigler, Kim, Buckley, 1999, “Distributed
Supply Chain Simulation in a DEVS/CORBA
executionenvironment”, Proceeding of the 1999 Winter
Simulation Conference.
[4] Carofiglio Andrea, Di Benedetto Paolo, 2001,
“Il Progetto REMOTE FACTORY: Utilizzo della web
based simulation per il benchmarking di sistemi di
schedulazione e controllo”,2001
[5] Tecnomatix Technologies
Homepage URL http://www.tecnomatix.com
[6] Bettini G., Rapaccini M., Tucci M.,- Automatic
Modelling Of Manufacturing Systems With
Conventional Stochastic Discrete Events Simulation
Languages, Proceedings of 9th European Simulation
Simposium, ESS97, Passau (D), 19-22th October 1997,
pp. 411-415.
[7] Page, Moose, Griffin, 1997, “Web based
simulation in SimJava using Remote Method
Invocation”, Proceeding of the 1997 Winter Simulation
Conference.
[8] IMS-Network of Excellence (IMS-NoE, 2003),
www.ims-noe.org
[9] Solberg J.J., Lin G.Y.J. (1992). Integrated shop
floor control using autonomous agents. IIE
Transactions, Vol. 24, No. 3, pag. 57-71
[10] Wild Web Integrated Logistics Designer, 1999-
2000, Research Project funded by M.U.R.S.T.
[11] M. Tucci, R. Revetria, Different Approaches in
Making Simulation Languages Compliant with HLA
Specification, Proceedings of SCSC 2001, pp. 622-628,
Orlando (FL), july 15–19, 2001 (ISBN 1-56555-241-5)
[12] Defence Modeling and Simulation Office
(DMSO), 2001, DMSO High Level Architecture
Homepage URL http://hla.dmso.mil/
[13] Cavalieri S. M. Macchi, S. Terzi, (2002),
Benchmarking Manufacturing Control Systems:
Development issues for the performance measurement
system. In: Proceeding at IFIP Performance
Measurement Workshop, Hanover, Germany

[14] XML, (2003), www.w3.org

7 AUTHORS BIOGRAPHY

Romeo Bandinelli took his Laurea Degree in
Mechanical Engineering at Florence University in
April 2002 discussing the thesis “Remote Factory
Control with Distributed Simulation”. Actually, he is a
PhD student of University of Florence, Department of
Energetic, Plants and Industrial Technologies Section.
His current research interests are Parallel and
Distributed Simulation applied to industry and supply
chain context, ICT, business process re-engineering .

Sergio Terzi is a PhD student of Politecnico di Milano,
Department of Economics, Industrial and Management
Engineering, Laboratory of Production Systems Design
and Management. He is also taking is PhD in
conjunction with CRAN laboratories, University of
Nancy I, France. He received his B.S. in Management
Engineering degrees from the University of Castellanza
in 1999 and from the same university he received his
M.Sc. degrees in Economics in 2002. His current
research interests are Distributed Simulation applied to
industry and supply chain context, Technologies
enabling Product Lifecycle Management within SME
and Modelling of Production Systems.

Mario Rapaccini took his Laurea Degree with honors
in Mechanical Engineering at Florence University in
april 1996. He is a professional engineer since 1996. In
may 2000 he achieved Ph.D. discussing the thesis
Advanced tool for configuration and impact assessment
of Integrated Municipal Solid Wastes Management
Systems. Currently, he's assistant professor in SSD
ING-IND/35. Research topics covered are: managerial
economics and business organisation, ICT, simulation
modelling and analysis (SM&A), business process re-
engineering (BPR). He's fellow of AiIG, ANIMP,
AIRO and ANIPLA.

Marco Macchi graduated in October 1997 in
Management and Production Engineering at
Politecnico di Milano. He is currently researcher at the
Department of Economics, Industrial Management
Engineering at Politecnico di Milano. His current fields
of interest are Design and Automation of
Manufacturing Systems, Modelling and Simulation of
Manufacturing Systems, Application of Multi-Agent
Systems, Computer Integration in Manufacturing
Systems Engineering, Maintenance Management. He
has published more than 20 papers on international
journals and national and international conference
proceedings. He is member of Special Interest Group
on Advanced Techniques in Production Planning and
Control of WG 5.7 of IFIP.

The paper is the result of a joint work conducted by the
authors; Romeo Bandinelli wrote par. 3.2 and 4, Mario
Rapaccini par. 1, Sergio Terzi par. 2 and 3.1, Marco Macchi
contributed to par. 5.

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

