

USING OPC DATA EXCHANGE IN SIMULATION ASSISTED
AUTOMATION TESTING

Jyrki Peltoniemi, Matti Paljakka, Tommi Karhela

VTT, Technical Research Centre of Finland
P.O.Box 1301, FIN-02044 VTT
email: Jyrki.Peltoniemi@vtt.fi

KEYWORDS
Process simulation, automation testing, OPC data
exchange, software design, performance

ABSTRACT

Dynamic process simulation models can be used for
testing automation - both control and logic - before the
commissioning. This activity requires a flexible, fast
and robust connection between automation software and
process simulation engines.

OPC Data eXchange (DX) specification provides an
open and standardized means for configuring
connections and exchanging data between various kinds
of automation components, e.g. dynamic process
simulators and automation software.

This paper first presents an analysis of the DX
specification from the perspective of large-scale
simulation use. Then, a DX server design is introduced
that provides high performance, without compromising
component reuse and portability. Then, the throughput
of a prototype DX server is evaluated. A performance
test is carried out to demonstrate the applicability of
DX-based communication in simulation assisted
automation testing purposes.

INTRODUCTION

Process simulation can be used in various phases of an
automation delivery project e.g. to verify process and
automation design in specification phase and to validate
automation implementation in factory acceptance tests
(FAT) at the end of the implementation phase. By using
simulation in FAT, one can rehearse the commissioning
of the system and to catch the flaws in the application
that would normally be caught on the site. This leads to
shorter commissioning times and better quality.

In simulation assisted FAT, the automation application
reads the measurement values from a simulation model
and writes the control values to the model. Typically,
the automation application and the simulation model run
in separate systems. The connections that are configured
between these two systems form the basis for the low-
level communication, required to exchange data during
the testing procedure.

For obvious reasons, there is a need for a vendor-
independent standard for both configuring and

executing data exchange in the testing environment. If
open data exchange specifications are used, applications
that have been implemented on any platform that
conforms to the standard can be tested in the same
environment. Similarly, simulation tools by different
providers can be connected to the same environment,
which may be desirable in case the model comprises
submodels that represent different domains, or in case
different parts or the model are provided by different
companies. Open interfaces to configure connections
and exchange data between the applications in this kind
of testing environment is hence desirable from several
perspectives.

Open interfaces, however, are not enough for successful
simulation aided testing if the implementations cannot
provide reasonable performance. The main objective of
this paper is to introduce a design that can provide large
throughput without compromising component reuse or
portability. This design and the suitability of the DX
specification are then evaluated using simple
performance tests that are carried out using a prototype
implementation.

Figure 1 presents an example on the co-use of multiple
automation and simulation products. The distributed
simulation system is controlled by a Simulation
Manager application, through which one can define data
connections and control simulation. For automation
testing use, the system may naturally also include a
database for test case definitions and software for the
analysis of test run data.

Simulation
Manager

DCS A
Simulator A

Simulator B

DCS B

PLC C

Simulator C

Simulation control

Data exchange

Figure 1: an Example System for Simulation Assisted
Testing

DATA EXCHANGE SPECIFICATION

The aim of the OPC Foundation is to promote open
connectivity in industrial automation. The Foundation
has developed and released a number of interface
specifications for the exchange of data, alarms and
events etc., and as these specifications have been
implemented in most automation products, OPC has
become a popular way to integrate data across the
enterprise.

To standardize the horizontal data exchange between
automation components, OPC Foundation has released a
new specification, Data eXchange (DX) (OPC
Foundation 2003a). Earlier, special OPC clients had to
marshal the data between two OPC data-access (DA)
servers (Laakso 2003; Karhela 2002). The setup had
basically two problems. Firstly, each client had a
product-specific way to configure the connections, and
the connections made with one product could not be re-
used with another one. Secondly, due to the client, the
communication architecture was unnecessarily
complicated and far from optimal in performance. The
new specification in principle solves both problems as it
removes the need for a special client.

The Data eXchange specification defines how to make
connections between a number of DX and DA servers.

Configuring a bi-directional connection between two
servers requires that both participants conform to the
DX interface specification. Information about
connections is as well distributed as each server has a
database of its own. The runtime communication is
based on the earlier DA specification or the newer
XML-DA specification.

A DX server mainly consists of an database for
connections, a COM (Component Object Model) or
WSDL (Web Services Description Language) interface
for updating the database, source access components for
DA or XML-DA servers, runtime target item
components and support for monitoring and controlling
the existing connections. These concepts are quite
clearly covered in the DX specification.

A DX database consists of DX connections that can be
arranged under DX branches. A DX connection is
composed of a target item id, a source item id, a
reference to the source server and a number of other
attributes. DX clients can modify each connection
separately or affect on the behavior of several
connections by modifying attributes of both branches
and source servers.

The structure of the DX database is quite complicated.
All servers have to support e.g. vectors of strings and

DA server

DA

source items

DX server

DX DA

target items

DA address space

DX
DXConnectionsRoot

DX Connection 1

SourceServers

DA browse tree

Status

DX Branch 1
DX Connection 2

DX Connection 3

DX database

XML-DA

DX connections

XML-DA server

XML-DA

source items

Control and monitoring clients using
either XML-DA or COM-DA

Configuration clients using DX
configuration interface (XML or COM)

Figure 2: Architecture of DX System (OPC Foundation 2003a)

branches that can simultaneously be items. The database
also includes some redundant information, as some
structural data can be accessed through the composed
string items or through individual simple items. Also the
fact that connections may have several parent-branches
may be problematic. One feature that clearly makes the
server-side implementation rather complex is that there
are essentially two distinct methods to affect on the run-
time behavior of connections. Using the configuration
interface is an obvious way, but controlling the run-time
behavior can also be made by writing to some special
items that exists in the DX database. Both methods are
available either through the COM or the WSDL
interface. The run time activity can thus be configured
using also plain data access clients. Figure 2 illustrates
the DX architecture.

One important requirement from the server is that the
operations that use the services of source servers have to
be asynchronous. The operations first update the
database, and then return the control back to the client.
After that, the DX-server asynchronically makes the
required operations by calling appropriate source
servers. Depending on the status of the source server,
the results of the operation may be reflected to one or
more items in the database of the corresponding DX
server. The client that made the original operation may
see this if it is currently monitoring proper items.

From the server-side design perspective the
specification is quite complicated, although the
configuration interface is quite simple.

A compliant DX server provides a rich set of operations
to clients that establish and monitor connections. There
can be several clients simultaneously making and
monitoring connections. The connections are not client-
specific i.e. it is not relevant which client has made the
connection. Furthermore all clients may see the whole
database. The clients use the standard DA and XML-
DA interfaces for monitoring purposes. There is a wide
set of operations that clients can make and the effects of
the operations greatly depend on the structure and
complexity of the database on the server side. The idea
is that by creating a meaningful structure in the
connection database, clients can conveniently and
effectively observe and control data exchange.
However, a client has no means for preventing other
clients from changing any parts of the database.

The DX specification provides a sufficient set of
operations to configure data exchange for co-use of
automation and simulation software. The extra
complexity originates of the support for two different
interface technologies, COM-IDL and WSDL.

Simulation control and synchronization interfaces, that
are needed to administrate non-real time simulators, are
still lacking standardized approach.

DX SERVER DESIGN

Adding the features that allow DA servers to act like
OPC clients, needs not to be a complicated task. Also
the interface that allows making such connections can
be very simple. This task became more complicated
mainly because the DX working group under the OPC
Foundation wanted that connections could also be
configured using a web-services (WSDL) interface. The
XML-DA interface (OPC Foundation 2003b) is also
provided for data exchange purposes. Some features and
extra complexity also reflects the fact that DX
specification extends the concepts already defined in the
earlier DA specification.

Requirements for Design

Before the DX server design is introduced, the basic
requirements for the DX server are listed. An obvious
requirement is to implement specification as precisely
as possible. For the interoperability reasons, also the
optional parts should be implemented whenever it is
possible. The second important requirement is to be able
to make such server deployments that allow porting
web-services part for non-Windows platforms also,
particularly to Linux. This is probably the most
restrictive requirement. Old COM-based DA
components that have already been developed and
tested should be able to be re-used as effectively as
possible. The performance of the COM-based data
exchange should be sufficient for large-scale use. The
performance should not suffer considerably e.g. because
of the support for connection monitoring or because of
the persistence requirements for the DX database.

The implementation should also provide an opportunity
to configure and monitor connections simultaneously
using the web-services interface and the COM interface.
This kind of functionality is, of course, required only on
Windows platform.

Essentially, there are three major requirements, that
design of DX server should reflect: portability,
component reuse and performance of data exchange.

Overview of the Component Design

Figure 3 illustrates the component view of design under
study. It consists of seven components, which build up
one executable. The simulation engine uses the data-
access framework interface (framework) to link
components that provides standardizes means for
external connections for the simulation model.

The COMKit exposes standard DA-interfaces and DX-
configuration interface implemented as a COM-
interface. The SOAPKit handles SOAP requests and
exposes both the OPC XML-DA interface and the DX
configuration interface declared using WSDL.

The DXKit (DXKit) contains major parts of the DX
server functionality and marshals data to and from the
simulation engine using the framework interface. The
COMKit and the SOAPKit marshal DX configuration
requests to the DXKit by using a C++ interface
DXWrap. This internal interface is a one-to-one
mapping of the standard OPC DX interface. The DXKit
uses a Database Kit (DBKit) to build up the persistent
database for DX connections. The DBKit provides
simple XML-based query language (ql) interface to
access database entries that consist of DX connections
and various simulation models.

The COM run time client (COM RT client) is
responsible for subscribing data from appropriate source
servers if source items are located in a COM DA server.
Similarly, the SOAP runtime client (SOAP RT client)
builds up the appropriate SOAP requests if source items
are found on an XML-DA aware source server. The
DXKit uses the C++ interface dxConf to command these
two components. The dxConf interface is also a bi-
directional interface. These two runtime client
components notify the DXKit whenever they get new
data from source servers.

Core DX Functionality

After a brief overview on the component design, a
closer discussion about functionality and interactions
between these components is examined.

The most central and most multifunctional component
in the DX-server design is the DXKit. It is a portable
component and one of its responsibilities is to marshal
data to underlying simulation engine or to the DBKit.
The DXKit hides the actual location of the data from the

COMKit and the SOAPKit. There are essentially three
different types of items that can be monitored either
through the COM DA or the XML-DA interfaces. The
first and most evident type of items is those that are
currently loaded to the solver of the underlying
simulation engine. The second type of items is those
that are not currently loaded to the simulation engine
but rather exist in the persistent database of simulator,
i.e. in the DBKit. The DBKit can contain several models
that can be simulated. These currently not simulated
items should also be observable and connectable using
standardized techniques. Thirdly, the DX specification
defines that every DX database has a similar kind of a
structure and e.g. each DX connection can be observed
also using standard data-access interfaces. The DXKit
hides these details from the COMKit and the SOAPKit
using the da interface (C++ data access interface) that
provides a means for browsing and transferring data.
This simplifies the structure of the COMKit and the
SOAPKit. It also improves the reusability of the DA
server implementation available in the COMKit.

For all active DX connections the DXKit keeps up
volatile run time objects as well. A particularly
interesting special case is the status information that
each connection has. This status information consists of
e.g. quality information, timestamps and source item
value. The connection status information changes
constantly during the run time data exchange. Persisting
these values during run time would definitely
compromise performance. Depending on the status of
the DX connection some data items that the connection
has created can be found either in the database (DBKit)
or in the volatile memory. This kind of behavior is also
hidden from the COMKit and the SOAPKit. Neither
component can see the actual location of any individual
data access item.

The DXKit hides the actual location of data from
monitoring and controlling clients, and it also hides it
from the COM RT client and SOAP RT client
components. The target item of each active connection
may exist either in the solver of simulation engine or in
the persistent database (DBKit). Typically the target
data of the active connections can be located in the
solver of underlying simulation engine, rather than in
the persistent database.

Although the DX configuration interface does not
contain many operations, the overall result of each
operation heavily depends on the structure of the DX
connection database. A single operation made by using
either the DX configuration interface or through the
control items may affect the status of several
connections. A good example of this kind of behavior is
a case, where a configuration client modifies the
attributes of some DX branch that has several child
connections. The source items of connections may exist
in several separate source servers. Furthermore, each of
these source servers may be either COM-DA or XML-

Simulation
 engine

SOAPKit

da
XML DX

XML DA

COM RT
 client

dxConf

SOAP RT
 client

dxConf

da

 COMKit

COM DX

COM DA

DXKit

framework

DBKit

ql

DXWrapDXWrap

Figure 3: Component View of DX Server Design

DA servers. The DXKit component resolves this kind of
dependencies and commands either the COM RT client
or the SOAP RT client component using the simple C++
interface dxConf. Through the dxConf interface the
DXKit can create new connections, remove connections
and modify the status of each connection. However, the
dxConf interface is much simpler than the standard DX
configuration interface. Ideally RT components should
be as lightweight as possible, and their sole purpose is
to get data and to marshal data from source servers to
the DXKit. Whoever implements these run time client
components, does not need to be aware of the constructs
defined in the DX specification.

It is also required that DX connections can be modified
and controlled using SOAP and COM clients
simultaneously. Centralizing all intelligent functionality
in the single component is the easiest way to fulfill this
challenge. Otherwise there may arise troublesome
inconsistencies and synchronization problems. In this
kind of a design all decisions that can affect the run time
behavior are made in the same portable component
irrespective of the interface type that the configuration
and monitoring clients are using.

Finally, the most important justification to centralize the
main functionality to the DXKit is to avoid coding
similar functionality twice. Clearly, if only e.g. a COM-
based DX implementation is needed, tighter integration
of a DA server, a DX configuration component and a
run time client part, would result in a more compact
realization. Similarly, if platform independence of the
SOAP-based solution is not an issue, different kind of
solutions may be reasonable and more effective.

Because of the challenging requirements, the overall
design consists of rather many components. As
interfaces between these components are basically bi-
directional, the overall structure and the control paths
during the operation take quite a complicated form.

Runtime Data Flow during Data Exchange

The data flow from source items to targets can begin
after the necessary data structures have been created to
the DXKit as well as to either of the run time
components, and to the persistent database of the
DBKit. The appropriate run time client component
marshals data to the DXKit. The DXKit marshals the
data to the appropriate location, typically to the
simulation engine. Neither the COMKit nor the
SOAPKit participates in data exchange.

In addition to marshalling data, the DXKit is
responsible for updating necessary status items that are
associated with each DX connection. These status items
can be used to observe the current state of the
connections and the data flow. Although the status items
are contained in the DX database, the status items
cannot be persisted during data exchange. Doing such
persisting operations at run time would drastically lower

the data exchange performance. The RT clients marshal
the connection status information and make appropriate
processing only if the DXKit requires that. This
behavior is essential to optimize the throughput for the
most demanding data exchange needs.

PERFORMANCE METRICS

Throughput is the most critical performance quantity,
when large automation applications are connected with
process simulators. An obvious test case consists of two
DX servers that are connected symmetrically using
COM-based communication. Similar tests have earlier
been done for DA-based communication. (Peltoniemi
2001)

A PC with a 1.2 GHz processor and 512-MB RAM was
used to carry out the test case. Both DX servers were
located on the same computer using Windows 2000
operating system. Creating equal numbers of DX
connections in both DX servers created a bi-directional
connection between two simulators. Event based (DA2)
data exchange was used to retrieve data from the source
server. All double precision source items in both servers
were continuously changing and the update rate that was
used during data exchange was 200ms (Figure 4).

None of the connections or items was observed during
data exchange. If monitoring clients are simultaneously
observing plenty of connection status data, this
significantly affects the performance, depending on the
needed data type conversions and other properties of
item set under monitoring. A particularly heavy load
may be generated if plenty of complex DX connection
items or connection status items are observed
simultaneously. Hence, when performance aspects are
critical, also the behavior of monitoring clients is
important.

As discussed preceding study (Peltoniemi 2001), it is
expected that the throughput depends linearly on the
number of connections. This seems to be a valid
assumption also in this case, see Figure 5.

DX server 1

DA DX

double item

DX server 2

DA DX

double item

Update rate=200ms,
All items changing,
DA2 event-based exchange

Figure 4: Arrangement of Test Case

The throughput is significantly better compared to the
performance that was achieved in earlier tests, where a
separate cross-connector client application marshaled
data between two OPC DA servers. This earlier test case
was a little bit different, as connections were created for
one direction only. The processor load was 81% when
11000 items were transferred from one server to
another. The throughput of the DX-based
communication is over three times better than the
throughput that was achieved using a separate client
application to marshal data.

If extremely large-scale models have to be connected
with external applications using e.g. Linux platform, the
web-services-based communication may not provide a
reasonable performance. An insufficient throughput
may be a problem for the COM-based communication
as well. Proprietary communication could be done e.g.
by using an optimized socket-based solution. In that
case the configuration of connections could still be
made through the standard DX interfaces, only data
exchange being done using run time socket components.

CONCLUSIONS AND FUTURE PROSPECTS

The discussion above concentrated those aspects that
are relevant when the components based on the OPC
Data eXchange specification are used in simulation
assisted automation system testing. A detailed design
was illustrated and the design philosophy was justified.
A design that provides support for the entire OPC DX
specification, including both SOAP-binding and COM-
binding was introduced. Component-based design
allows reasonable throughput without compromising
portability of SOAP-based solution and reusability of
existing COM DA server components.

The performance of the data exchange was studied to
have a better understanding about the suitability of the
DX-based communication in large-scale simulation
aided automation testing purposes. The performance of
COM-based data exchange should be reasonably good if

both server components are designed in a manner that
allows a large throughput.

COM-based data exchange forms the basis for the data
exchange between automation system and process
simulator in the foreseeable future. However, SOAP-
based data exchange defined in the OPC XML-DA
specification may become a more attractive choice in
forthcoming years. The suitability of XML-DA -based
communication for large-scale use will be studied using
a similar arrangement.

The ability to effectively and flexibly exchange data
between automation software and process simulation
models is a fundamental requirement for successful
simulation aided automation testing. Using OPC Data
eXchange specification, simulation systems can be built
that meet this requirement. However, solving the purely
information technology related challenges is only the
first step in the take-up of simulation in automation
testing. In addition, defining proper working methods
for simulation aided automation testing and building
tools to support the new working methods are essential
research challenges in near future.

REFERENCES

Karhela, Tommi. A Software Architecture for Configuration
and Usage of Process Simulation Models. Software
Component Technology and XML-based Approach. Espoo,
2002, Technical Research Centre of Finland, VTT
Publications 479, 129p.

Laakso, Pasi; Peltoniemi, Jyrki; Karhela, Tommi; Paljakka,
Matti. The use of OPC in Simulation Systems – experiences
and future prospects. The Proceedings of the 3rd International
Symposium on Open Control Systems 2003, Helsinki,
September 9-10 2003.

OPC Foundation. OPC Data eXchange Specification, 1.0,
March 5, 2003.

OPC Foundation. OPC XML-DA Specification, 1.0, July 12,
2003.

Peltoniemi, Jyrki; Karhela, Tommi; Paljakka, Matti.
Performance Evaluation of OPC-based I/O of a Dynamic
Process Simulator. The Proceedings of the 2001 International
Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), Orlando, Florida,
July 15-19 2001, p. 231-236, SCS, ISBN: 1-56555-240-7.

11

26

47

67

86

0

20

40

60

80

100

0 5000 10000 15000 20000

Number of Connections

%
 P

ro
ce

ss
o

r
T

im
e

Figure 5: Total Processor Time Using Different
Number of Connections

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

