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abstract

Linguistic Equation (LE) modelling approach has various

applications in non-linear multivariable systems. Insight

to the process dynamic operation is maintained, and au-

tomatic generation of systems, model{based techniques

and adaptation techniques can be applied in developing

and tuning systems for process modelling and control.

The multimodel LE approach provides a compact mod-

elling of more or less smooth input{output dependencies.

The overlapping operating areas are obtained by fuzzy

clustering. The Fuzzy{ROSA method (FRM) serves for

a data{based rule generation to model a given input{

output dependency and is eÆcient for modelling compli-

cated local non-linear structures. These properties are

combined in a hybrid data{based modelling concept ap-

plied to dynamic simulation of a solar collector �eld. The

hybrid fuzzy LE simulator was tested in data{based mod-

elling of dynamic behaviour of a solar collector �eld. The

new adaptive controller tuned with this technique has re-

duced considerably temperature di�erences between col-

lector loops. EÆcient energy collection is achieved even

in variable operating condition.

introduction

In intelligent control design, hybrid techniques com-

bining di�erent modelling methods in a smooth and

consistent way are essential for successful comparison

of alternative control methods. Switching between

di�erent submodels in multiple model approaches should

be as smooth as possible. For slow processes, predictive

model{based techniques are necessary at least on the

tuning phase. Adaptation to various non-linear multi-

variable phenomena requires a highly robust technique

for the modelling and simulation.

Dynamic simulators based on Linguistic Equations are

continuously used in development of multilayer linguistic

equation controllers, in which the basic PI type LE

controller is extended with a working point controller

and a module for asymmetry handling and braking.

This new type of controller was �rst implemented

on a solar collectors �eld in a solar power station at

Plataforma Solar de Almeria [JBL97, JBV98]. Adaptive

set point procedure and feed forward features have later

been included for avoiding overheating. The present

controller takes also care of the actual set points of the

temperature [JV03].

The multilevel linguistic equation controller has been ap-

plied in the control of the burning end of the lime kiln

[JJA01]. The multilevel LE controller has been in on{line

use in an industrial lime kiln for more than four years,

and the experiences are very similar to the simulation re-

sults [Juu98]. Smooth production rate changes are found

to be preferable also in the real process. The robust

dynamic simulator based on Linguistic Equations is an

essential tool in �ne{tuning of all these controllers.

solar power plant

The aim of solar thermal power plants is to provide

thermal energy for use in an industrial process such as

seawater desalination or electricity generation. If such

plants are to provide a viable, cost e�ective alternative

to more polluting forms of power production, they must

achieve this task despite uctuations in their primary

energy source, the sunlight. In addition to seasonal and

daily cyclic variations, the intensity depends also on

atmospheric conditions such as cloud cover, humidity,

and air transparency. The purpose is not to maintain

a constant supply of solar produced thermal energy in

spite of the disturbances. Rather the aim of the control

scheme should be to regulate the outlet temperature of

the collector �eld in order to supply steam to the turbine

in a range as constant as possible despite disturbances,

changes of the solar radiation, ambient temperature,

inlet oil temperature etc.

This is bene�cial in a number of ways. Firstly, it collects

any available thermal energy in a usable form, i.e. at the

desired temperature, which improves the overall system

eÆciency and reduces the demands placed on auxiliary

equipment as the storage tank. Secondly, the solar �eld

is maintained in a state of readiness for the resump-

tion of full-scale operation when the intensity of the



sunlight rises once again; the alternative is unnecessary

shutdowns and start-ups of the collector �eld, which are

both wasteful and time consuming. Finally if the control

is fast and well damped, the plant can be operated close

to the design limits thereby improving the productivity

of the plant.

All the experiments were carried out in the Acurex Solar

Collectors Field of the Plataforma Solar de Almeria lo-

cated in the desert of Tabernas (Almeria), in the south of

Spain. The Acurex �eld supply thermal energy (1 MW)

in form of hot oil to an electricity generation system or a

Multi{E�ect Desalination Plant. The solar �eld consists

of parabolic{trough collectors [JBL97, JBV98]. Control

is achieved by means of varying the ow pumped through

the pipes during the plant operation. In addition to this,

the collector �eld status must be monitored to prevent

potentially hazards situations, e.g. oil temperatures

greater than 300 oC. When a dangerous condition is

detected software automatically intervenes, warning the

operator and defocusing the collector �eld.

Trial and error type controller tuning does not work since

the operating conditions cannot be reproduced. The dy-

namic of the process depends on the general �eld operat-

ing conditions and characterised by the following aspects:

� Time varying transport delay depends on the ma-

nipulated variable (oil ow rate).

� The dynamics, in particular high frequency peaks

in the frequency response of the plant, is diÆcult to

model.

� The plant has a non-linear behaviour, and therefore

linearised models depend on operating point.

� The solar radiation acts as a fast disturbance with

respect to the dominant time constant of the pro-

cess.

Test campaigns cannot be planned in detail because of

changing weather conditions. Usually, test campaigns

include step changes and load disturbances. Weather

conditions take care of irradiation disturbances. As the

process must be controlled all the time, modelling is

based on process data from controlled process.

Operating conditions cannot be reproduced and weather

conditions have seasonal di�erences. Therefore, dynamic

simulators are needed in controller design and tuning.

Conventional mechanistic models do not work: there are

problems with oscillations and irradiation disturbances.

For non-linear multivariable modelling on the basis of

data with understanding of the process there are two al-

ternatives: fuzzy set systems and linguistic equations.

data{based modelling

For the modelling of technical complex processes one

is often restricted to only with data{based methods

since a complete mathematical process description is

not practicable with justi�able expenditure. Various

modelling approaches try to combine the advantages of

the physical and data{driven modelling techniques, e.g.

parameters for mechanistic models are approximated by

black{box techniques. Since the identi�cation is on a

practical level only for linear systems, a lot of work with

local linear models is needed.

Intelligent methods have extended the toolbox to hybrid,

semi{mechanistic or grey{box modelling. Fuzzy cluster-

ing is an extension of fuzzy knowledge based systems

to data{driven techniques. Neuro{fuzzy modelling and

identi�cation techniques include fuzzy{logic{based meth-

ods to neural computing. Linguistic equations have close

links to both fuzzy set systems and neural networks.

Data Preprocessing

Direct measurement value is not always best one to

be used in modelling. Sometimes moving variances,

standard deviations or value ranges are more informative

for the phenomena. Also moving skewness and kurtosis

can be obtained. Selecting appropriate window for this

moving statistics is also an important decision. Trend

removal on the basis of the user de�ned window (moving

average or median) can be included to the preprocessing

if the variation around the trend is important for the

modelling.

The FuzzEqu Toolbox developed in Matlab-Simulink en-

vironment provides tools for experimenting with di�erent

methods and windows [Juu00]. The data set is updated

only after accepting the operation. Several statistical op-

erations can applied also sequentially to the data, e.g.

after trend removal the resulting data can be analysed

other statistical methods. For small systems, delays can

be taken into account by moving the values of input vari-

ables correspondingly.

Linguistic Equation Approach

Linguistic equation models consist of two parts: inter-

actions are handled with linear equations, and nonlin-

earities are taken into account by membership de�nitions

[Juu99]. The basic element is a compact equation

mX

j=1

AijXj +Bi = 0; (1)

where Xj is a linguistic level for the variable j, j = 1:::m.

Linguistic values very low, low, normal, high, and very

high correspond to integer numbers -2, -1, 0, 1 and 2.

The direction of the interaction is represented by inter-

action coeÆcients Aij . The bias term Bi was introduced

for fault diagnosis systems. Linguistic equations can be

used to any direction. The directions of interaction are

usually quite clear in this kind of small systems: only

the absolute values of the coeÆcients need to be de�ned.

The membership de�nition is a non-linear mapping of

the variable values inside its range to a certain linguistic

range, usually [�2; 2]. The mapping is represented

with two monotonous, increasing functions, which must

overlap in the center at the linguistic value 0. In

the present system, these functions are second order

polynomials. CoeÆcients are extracted from data or

de�ned on the basis of expert knowledge.
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Figure 1: Four operating areas obtained by Fuzzy

C-Means Clustering.

Modelling with linguistic equations has following stages:

� Membership de�nitions are generated by using pre-

processed data.

� Linguistic relations are obtained by non-linear scal-

ing.

� Linguistic equations are generated from the scaled

data denoted as linguistic relations.

� Selecting equations from alternatives is based either

on the overall �t or on the prediction performance.

� Tuning modi�es membership de�nitions, linguistic

equations or both to improve �tting to the training

data.

Real-valued approach is now the main method in appli-

cations because of eÆcient tuning techniques. A neural

network based tuning can be done for selected variables.

A recently generated genetic tuning method can handle

several variables at a time by varying parameters of

membership de�nitions.

The modelling technique can be extended to several

equations as well, e.g. by using Takagi-Sugeno (TS)

type fuzzy models together with ANFIS method for

development of local linear models for di�erent operating

areas. As LE models are non-linear, also these local

models are non-linear.

For model development, the training data consist

of several data sets. Some overlap of the working

point areas is automatically introduced when process

data is used. Fuzzy C-Means Clustering is used for

�nding these overlapping operating areas (Figure 1).

Alternatively the operating areas can be obtained by

Self-organizing Maps as well (Figure 2). The delays are

taken into account in tuning. The interaction matrix is

normally the same for all working areas, which is quite

reasonable since the directions of interactions do not

change considerably between di�erent working points.

The di�erences between the models are handled with

membership de�nitions.
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Figure 2: Four operating areas obtained by a Self-

organizing Map.
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Figure 3: LE model for working point variables.

The working point variables already de�ne the overall

normal behaviour of the solar collector �eld. The model

shown in Figure 3 has a quite high correlation to the

real process data (Figure 4). The di�erences have a

clear relation to operating conditions, e.g. oscillatory

behaviour is a problem when the temperature di�erence

is higher than the normal. Separate dynamic models

(Figure 5) are needed to capture the dynamic behaviour

in di�erent operating conditions (Figure 1).

The FuzzEqu toolbox contains tools for all the develop-

ment and tuning stages described above [Juu00]. It also

contains routines for modifying membership de�nitions

interactively to adapt the models to changing operat-

ing conditions and routines for building LE systems from

large fuzzy systems including various ruleblocks imple-

mented in FuzzyCon or Matlab(r) FuzzyLogic Toolbox.

Other fuzzy modelling approaches can be used as chan-

nels for combining di�erent sources of information. Fuzzy

systems as Dora for Windows bocks can be included in

Simulink environment.
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Figure 4: LE model for working point variables.

Dynamic LE modelling

Dynamic fuzzy models can be constructed on the ba-

sis of state{space models, input{output models or semi{

mechanistic models [Juu99]. In the state{space models,

fuzzy antecedent propositions are combined with a de-

terministic mathematical presentation of the consequent.

The most common structure for the input{output mod-

els is the NARX /Non-linear AutoRegressive with eX-

ogenous input) model which establishes a relation be-

tween the collection of past input{output data and the

predicted output:

y(k+1) = F (y(k); :::; y(k�n+1); u(k); :::; u(k�m+1));

(2)

where k denotes discrete time samples, n and m are

integers related to the systems' order. Multiple input,

multiple output (MIMO) systems can be built as a set

of coupled multiple input, single output MISO models.

E�ective delays depend on the working conditions

(process case); e.g. the delays are closely related to the

production rate in many industrial processes. Initial

estimates of the delays can be developed by correlation

analysis, but similarities detected by the correlation

analysis can be accidental in some cases. The delays

should be assessed against process knowledge, especially

if normal on-line process data is used [Juu99]. An

appropriate handling of delays extends the operating

area of the model considerably.

The basic form of the LE model is a static mapping,

and therefore dynamic LE models could include several

inputs and outputs originating from a single variable

[Juu99]. However, rather simple input-output models,

e.g. the old value of the simulated variable and the

current value of the control variable as inputs and the

new value of the simulated variable as an output, can

be used since nonlinearities are taken into account by

membership de�nitions. Comparisons with di�erent

parametric models, e.g. autoregressive moving average

(ARMAX), autoregressive with exogeneous inputs

(ARX), Box-Jenkins and Output-Error (OE), show that

the performance improvement with additional values is

negligible.
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Figure 5: A dynamic LE model for temperature dif-

ference.

In the single model approach, also variables a�ecting

to the working point of the model are included to the

model. In small models, all the interactions are in a

single equation. For larger models, the equation system

is a set of equations where each equation describes

an interaction between two to four variables. The

development work starts with an automatic generation

of membership de�nitions, which are then used in

generation of interaction alternatives. Any equation can

be rejected or modi�ed on the basis of expert knowledge

before or during the tuning phase.

The dynamic model of the solar collector �eld is based

on a compact LE model for the temperature di�erence

is shown in Figure 5. The new temperature di�erence

between the inlet and outlet depends on the irradiation,

oil ow and previous temperature di�erence. This model

provides the driving force for the simulator, and the

speed of the change depends on the operating conditions.

A multimodel approach based on fuzzy LE models has

been developed for combining specialised submodels.

The approach is aimed for systems that cannot be

suÆciently described with a single set of membership

de�nitions because of very strong non-linearities. Ad-

ditional properties can be achieved since also equations

and delays can be di�erent in di�erent submodels. In

the multimodel approach, the working area de�ned by

a separate working point model. The submodels are

developed by the case{based modelling approach.

Various modelling methodologies have been compared

for both dynamic and working point models in the

FuzzEqu Toolbox. Feedforward neural networks, radial

basis networks and ANFIS method provide better

�tting to the training data but generalisation is worse

in these systems as they include parts which are not

consistent with process operation. Each LE submodel

could include several alternative equations combined

with fuzzy logic but these models have same over�tting

problems. According to the tests with real process data,

the fuzzy LE system with four operating areas is clearly

the best overall model.



11 12 13 14 15 16 17
200

210

220

230

240

250

260

270

Time

O
ut

le
t T

em
pe

ra
tu

re

Test data
LE model 

200 210 220 230 240 250 260 270
200

210

220

230

240

250

260

270

Test data

LE
 m

od
el

Correlation = 0.98778
Relative error = 0.0069586

Figure 6: Simulation results of the LE model.

Fuzzy{ROSA Method (FRM)

The Fuzzy{ROSA1 method (FRM) serves for a data{

based generation of fuzzy rules which model a given

input{output dependency. The basic idea of the FRM is

to apply a relevance test to single fuzzy rules to assess

their ability to describe a relevant aspect of the system

under consideration. This reduces the problem of �nding

a good rule base to the problem of �nding single relevant

rules. On the other hand, since each rule with high rele-

vance is supposed to express an important aspect of the

system, such rules are meaningful by themselves, which

leads to more transparent and comprehensible rule bases.

The FRM uses generalising (incomplete) rules, which

consist of a varying number of linguistic statements

(combination depth) in the premise. If there are fewer

statements than input variables, one rule covers several

linguistic input situations. The rule generation process

is divided into four main steps [JSSK00]. There are al-

ternative strategies available for each step, so that FRM

can be adapted to di�erent application requirements

(e.g., for modelling, classi�cation, approximation or

prediction) and problem sizes (e.g., numbers of variables,

linguistic values and data sets).

Combined Approach

Linguistic equation (LE) models provide a good overall

behaviour in di�erent operating conditions (Figure 6).

Oscillations are well represented, and the temperature

is on an appropriate range in the case of irradiation

disturbances. However, some problems have been

detected in extensive comparisons with process data:

there is a shift in temperature level for some operating

conditions. In some conditions the shift is positive and

in some conditions negative. The present model needs

1RuleOrientated Statistical Analysis

Figure 7: Cascaded modelling (left) and resulting

model (right)

improvements also for load disturbances.

Flexible fuzzy models generated with the Fuzzy-ROSA

method provided additional tools for these situations

[JSSK00]. These fuzzy models are useful in handling

special situations in limited operating range. However,

functional relationship between the output variable

and the input variable are partly smooth and partly

complicated non-linear [JSSK00]. A straightforward

application of the FRM may result in a high number of

rules or an undesired competition between locally and

globally acting rules.

To overcome these problems, a cascaded rule generation

(Figure 7 left) has been proposed in [Kie99]: A �rst pass

generates a submodel A for the more or less smooth

global structure, a second pass generates a submodel B

for the remaining usually locally complicated error "1
between submodel A and the real process. The �nal

model is the superposition of the submodels A and B

(Figure 7 right).

Since smooth dependencies can be described easily by

simple equations, we take the Linguistic Equations (LE)

as a promising approach for the generation of a compact

submodel A. Since complicated local structures are

eÆciently detected by the FRM, we apply the FRM for

the generation of submodel B. Thus the cascaded mod-

elling with the LE and FRM combines the advantages

of both methods, which can result in a considerable

improvement of the quality of the resulting �nal model.

Feasibility of the combined LE{FRM approach was

demonstrated by applying it to a solar power plant

[JSSK00].

Dynamic LE Simulator

The dynamic model for temperature di�erence between

inlet and outlet temperatures of the collector �eld has

been developed for the solar collector �eld. The simu-

lator includes models for di�erent operating conditions.

Smooth transitions between the models are based on

fuzzy logic. Working point model is de�ned by the

irradiation and the di�erence between the inlet and

outlet temperatures.

According to the test results at the Plataforma Solar de

Almeria, the dynamic simulator of the solar collector

�eld represents very accurately the �eld operation



(Figure 6). In steady weather conditions, the present

simulator operates within 2 degrees centigrade. Os-

cillatory conditions are also handled correctly. The

simulator is based on the multimodel LE approach

with four specialised LE models developed for di�erent

operating conditions. The simulator moves smoothly

from start-up mode via low mode to normal mode.

Later the �eld visits shortly in high mode and low mode

before returning to low mode in the afternoon.

Correlation between the calculated and measured

temperatures is very high for all time period: 0.992 for

the whole day, 0.988 for the normal operating area and

0.961 for the start-up period. The relative errors are 2.9

percent for the whole day, 0.7 percent for the normal

operating area and 16.8 percent for the start-up period

[JSSK00].

For start-up the dynamic LE simulator requires improve-

ment since the process changes considerably during the

�rst hour [JSSK00]. The simulator underestimates the

temperature growth because of unevenness of the oil ow.

For radiation disturbances, the LE simulator operates

quite well: the temperature is on the appropriate range

all the time and the timing of the changes is very good.

The simulator can also handle correctly oscillations al-

though the dynamics depends on the operating point. A

considerable temperature shift can be seen some periods.

The LE model should be improved in these areas. An-

other alternative is to combine LE modelling and fuzzy

modelling.
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Figure 8: Model obtained with the FRM.

Fuzzy{ROSA Modelling

As described in Section we apply the FRM to model

the remaining error of the LE{model. The learning

data consist of simulation results of four selected days.

In a preliminary feature selection process, we found

the following seven input variables to be strongly

correlated to the output variable: daytime, oil ow,

corrected radiation (moving average), ambient temper-

ature, delayed inlet temperature, delay and working point.
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Figure 9: Simulation results of the the combined LE{

FRM model.

In order to reduce the computational e�ort we use

only these input variables for the fuzzy{modelling. The

membership functions of the input and output variables

are extracted knowledge based by considering their

distributions. This leads to seven linguistic expressions

for the input variables and nine for the output variable.

For rule generation we apply a complete search consid-

ering all rules which refer to not more than four input

variables (maximum combination depth of four). As the

data are disturbed strongly by stochastic inuences, we

choose the Mean Value Based Index as test- and rating

strategy.

This approach leads to a fuzzy rule base of 173 relevant

rules, which model the remaining error of the LE{model.

In a second step we apply the optimising conict reduc-

tion. The �nal rule base consists of 77 rules and the

modelling error on learning data is reduced to 2.7 de-

grees centigrade in the combined approach.

dynamic solar plant simulator

The fuzzy model was combined with the LE{model and

used in a close{loop operation in the dynamic simulation

[JSSK00]. This serves for validation as the dynamic

simulation generates situations (data sets) which di�er

from the learning data sets.

Fuzzy error model is included to the estimation of the

new temperature di�erence goal. The fuzzy system

developed with Fuzzy{ROSA method2 was included as a

Dora for Windows 6.2 block to the Simulink simulator.

The fuzzy system produces additional temperature

di�erence (Figure 8) in the dynamic model. For the

clear day, there is hardly any correction, which means

that the model is not much improved. Important

is that the Fuzzy{ROSA method does not develop

any rules for the conditions where it cannot improve

performance. Correlation between the calculated and

2Obtained with the WINROSA 2.0 software tool:

http://esr.e-technik.uni-dortmund.de/winrosa/winrosa.htm .



measured temperatures was about the same as for the

LE model: 0.991 for the whole day, 0.981 for the normal

operating area and 0.960 for the start-up period. The

relative errors are 3.0 percent for the whole day, 0.8

percent for the normal operating area and 17.0 percent

for the start-up period.

For the period after radiation disturbances (Figure 9),

the combined model improves the result considerably

from the results of the LE model. Correlation between

the calculated and measured temperatures depends

now on the operating conditions: 0.964 for the whole

day, 0.967 for the normal operating area, 0.969 for the

start-up period and 0.176 for the load disturbance in the

end of the day. The relative errors are 6.6 percent for

the whole day, 1.8 percent for the normal operating area,

18.9 percent for the start-up period and 8.9 percent for

the load disturbance.

The dynamic LE simulator is a practical tool in the con-

troller design. The LE controller tuned with this simu-

lator combines smoothly various control strategies into

a compact single controller. Control strategies ranging

from smooth to fast are chosen by setting the working

point of the controller. The controller takes care of the

actual set points of the temperature. The operation is

very robust in diÆcult conditions: startup and set point

tracking are fast and accurate in variable radiation con-

ditions; the controller can handle eÆciently even multiple

disturbances. Adaptive set point procedure and feed for-

ward features are essential for avoiding overheating. The

new adaptive technique has reduced considerably tem-

perature di�erences between collector loops. EÆcient

energy collection was achieved even in variable operat-

ing condition [JV03].

conclusions

The combined modelling approach improves performance

of the dynamic simulator. The smooth and fairly accu-

rate overall behaviour is achieved with Linguistic Equa-

tions. The result is further improved by fuzzy sys-

tems generated for special situations with Fuzzy{ROSA

method. The combined dynamic model is feasible for

controller tuning but more special cases need to be anal-

ysed to expand the operating area of the dynamic simu-

lator. Fuzzy clustering methods provide feasible tech-

niques for selecting new cases for modelling from the

extensive experimental data. The new adaptive control

technique has reduced considerably temperature di�er-

ences between collector loops. EÆcient energy collection

was achieved even in variable operating condition.
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