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ABSTRACT 
 
The problem of shared state is well known to the 
parallel and distributed simulation research 
community. In this paper, we revisit the problem of 
shared state in the context of a High Level Architecture 
based distributed simulation. A middleware approach 
is proposed to solve this problem within the framework 
of the High Level Architecture Runtime Infrastructure. 
Four solutions to this problem are implemented in the 
middleware using receive-order messages. We will 
discuss the implementation issues of these four 
solutions in the middleware. Experimental results 
comparing the performance of these four solutions 
against a simple request-reply approach using time-
stamp-order messages are also presented. 
  
1 INTRODUCTION 
 
Simulation has traditionally been used as a tool to 
perform “what if”  analysis in complex systems such as 
the operations of a manufacturing production facility.  
In a supply chain scenario with multiple business 
partners each with its own manufacturing production 
facility, it is not sufficient for each business partner in 
the supply chain to optimize its operation using 
simulation. In order to optimize the performance of the 
whole supply chain, these simulation models need to 
be integrated before any meaningful analysis can be 
made. Physically integrating these simulation models 
into a single simulation environment is often not 
possible due to 1) the complexity of individual models; 
2) business partners being geographically dispersed; 
and 3) confidentiality in sharing certain parts of the 
simulation model. Distributed simulation offers a 
solution to this problem by allowing existing 
simulation models to be reused and integrated with 
other simulation models in the supply chain through 
well-defined interfaces. Each supply chain simulation 
can also selectively expose only the necessary data to 
other partners in the supply chain simulation.  
 

An emerging standard for distributed simulation, 
namely the High Level Architecture (HLA) standard 
has been proposed by the U.S. Department of Defense 
(DoD) (Kuhl et al. 1999). The HLA defines the rules 
and specifications to support reusability and 
interoperability of different simulators. In HLA 
terminology, a single simulator is referred to as a 
federate. A federation is then a set of federates working 
together to achieve a given goal.  Each federate defines 
the objects and interactions that are shared in its 
simulation object model (SOM) and interacts with one 
another over the Runtime Infrastructure (RTI) (DMSO 
2002). 
 
The problem of shared state is a well-known problem 
in both the parallel, as well as the distributed 
simulation research community. In the context of an 
HLA-based distributed simulation, the issue involves 
the following: an “owner”  federate updates a local 
shared variable periodically and multiple remote 
“reader”  federates can access the value of the shared 
variable instantaneously (at the same simulation time 
as the read). For the rest of this paper, we assume that 
the HLA-based distributed simulation runs on an RTI 
that uses a conservative synchronization protocol for 
its time management service. 
 
Figure 1 shows a straightforward implementation to 
support shared state in an HLA-based distributed 
simulation using a set of time-stamp-order (TSO) 
request-reply interactions both time-stamped at the 
simulation time t. In the example, the owner federate 
updates a shared variable s periodically, and also sends 
a TSO event e to the reader federate periodically with a 
lookahead of L. At simulation time t, the reader 
federate accesses the value of the shared variable s by 

Figure 1: Request-Reply using TSO Messages 
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sending a TSO request message time-stamped at t. The 
owner federate, on receiving the request message, will 
issue a TSO object update with simulation time t. We 
refer to this approach to support shared state on an 
HLA-based distributed simulation as the PullTSO 
approach.  
 
In order for the PullTSO scheme to work, both the 
owner and the reader federates must be time-
constrained and must regulate the federation with a 
lookahead of zero. However, having zero-lookahead in 
a federation is often detrimental to the performance of 
the simulation system whether the underlying RTI is 
using conservative or optimistic time synchronization. 
Suppose the request-reply TSO messages in Figure 1 
are replaced by receive-order (RO) messages. Since 
RO messages are not used by the RTI to check 
lookahead and the time advancement constraint on 
each federate, the owner federate can regulate the 
federation with a lookahead of L instead. 
  
In this paper, we address the issue of shared state in an 
HLA-based distributed simulation by replacing the 
TSO request-reply messages in the PullTSO approach 
with RO messages. We propose a middleware 
approach to support shared state. We will outline four 
solutions to support shared state within the 
middleware. While the use of the middleware approach 
is to hide the implementation of the support for shared 
state from the users, it must also preserve the semantics 
of the different RTI APIs that are used by the users. 
We will explain how this can be achieved in the 
middleware using an example. The performance of the 
solutions proposed will also be compared against that 
of the PullTSO approach. 
 
The rest of the paper is organized as follows. Section 2 
describes some related work in solving the shared state 
problem. Our solutions to shared state using the 
middleware approach will be described in Section 3. In 
Section 4, we discuss some issues in implementing the 
solutions in the middleware. Experimental results 
comparing our solutions to the PullTSO approach will 
be presented in Section 5. We conclude this paper in 
Section 6 and outline further work in this area. 
 
2 RELATED WORK 
 
The issue of shared state has been explored in the 
context of several parallel simulation research projects.   
For example, in the work by Mehl and Hammes (Mehl 
and Hammes 1993), they proposed two general 
approaches to implement shared variables using a 
conservative synchronization algorithm, namely 1) 
request-reply and 2) cached-copy. In the request-reply 
approach, the owner keeps a history list of the shared 
variable. When a reader requests the shared variable at 
simulation time t, the owner will wait until it is certain 
that no other write messages will be received with 
simulation time smaller than t before it retrieves the 

value of the shared variable at time t from its history 
list and forwards the reply to the reader.  
 
The request-reply approach frees the owner from the 
time constraints from its readers and allows the owner 
to proceed ahead of its readers whenever possible.  
However, a reader has to always suspend itself 
whenever it needs to access the value of the shared 
variable from the owner. The cached-copy approach 
proposed by Mehl and Hammes solves this problem by 
having each reader keep a cached-copy of the shared 
variable. The cached-copy of the shared variable has a 
time-guarantee associated with it.  Whenever a reader 
needs to access the shared variable, it first checks the 
validity of its cached-copy of the shared variable. It 
will send a request to the owner if such copy is not 
found or the copy is invalid. 
 
Lim et al. (Lim et al. 1998) showed that if the 
request/write/reply messages are sent using time-stamp 
order, then the request-reply approach proposed by 
Mehl and Hammes could function without a history 
list. While Mehl and Hammes use a cache-on-demand 
policy to update the reader’s local cache copy of the 
shared variable, Lim et al. explored an always-update-
by-writer update policy for the cached-copy approach 
whereby the owner will forward each update to the 
shared variable to all its readers.  
 
The issue of shared variables has also been raised 
during the third meeting of the HLA-CSPIF forum 
(HLA-CSPIF 2002). The aim of this forum is to create 
a standardized approach to distributed simulation using 
HLA to support interoperation of discrete event models 
created in commercial-off-the-shelf (COTS) simulation 
packages.  The group is currently looking at specifying 
reference models for testing the interoperability of 
different simulators. In particular, one of the reference 
models under discussion requires the implementation 
of shared variables across two or more different COTS 
simulation packages. 
 
A preliminary report on the work described in this 
paper can be found in Gan et al. (Gan et al. 2003) in 
which two of the solutions presented in this paper are 
first proposed. In this paper, we extend on our previous 
work and propose two more solutions to solving the 
shared state problem. We will also discuss 
implementation issues to enable support for shared 
state in a middleware for RTI. 
 
3 THE SOLUTIONS 
 
Both the request-reply and the cached-copy solutions 
proposed by Mehl and Hammes can be implemented 
easily under HLA. However, both the request and reply 
messages, as well as the update message for the 
cached-copy, will have to be sent using TSO 
interactions and object updates at the current 
simulation time. This implies that both the owner and 



reader federates must regulate the federation with zero 
lookahead. 
 
In this section, we describe four solutions to solve the 
problem of shared state. We will refer to these four 
solutions as: 1) PullRO, 2) PushRO, 3) PullROTG and 
4) PushROTG. The PullRO and PushRO solutions will 
be described briefly as they have previously been 
described in detail in Gan et al. (Gan et al. 2003). All 
four solutions involve replacing the TSO interactions 
and object updates used in the standard request-reply 
and cached-copy solutions with RO messages. This 
eliminates one source of zero lookaheads in the 
federation and allows both the owner federate as well 
as the reader federates to regulate the federation with 
the next smallest (possibly non-zero) lookahead. 
Similar to the work carried out by Lim et al. (Lim et al 
1998), our solutions currently assume that the owner is 
the only writer for the shared variable. We plan to 
eliminate this assumption in the next stage of our work. 
 
3.1 Solution 1: PullRO 
 
In the PullRO approach, whenever a reader needs the 
latest value of a shared variable, it sends an RO 
interaction to the owner to request for the value at a 
specific request time. The owner, on the other hand, 
maintains a history list of all the updated values of the 
shared variable with their associated update times. 
Suppose the owner federate is at simulation time t1 and 
it receives a request from a reader with request time t2. 
If t1 

�
 t2, the owner federate searches its history list for 

two consecutive entries with update times tj and tk such 
that tj �  t2 < tk. An RO object update with the value of 
the shared variable at simulation time tj will be sent 
back to the reader. If t1 < t2, the request will be buffered 
and serviced when the owner’s simulation time reaches 
t2. 
 
3.2 Solution 2: PushRO 
 
In the PushRO solution, we use a cached-copy 
approach with an always-update-by-writer update 
policy similar to that used by Lim et al. (Lim et al. 
1998). Whenever the owner updates the shared 
variable, it also sends the update to each of its readers. 
This update is associated with the timestamp of the 
update and is sent using RO interactions or object 
updates.  As the owner may be sending an update with 
timestamp greater than the simulation time of a reader, 
each reader must also keep a future list to store the 
updates received from the owner.  
 
In situations in which one of the readers runs ahead of 
the owner, the reader will not find any valid entry in its 
future list. In this case, the reader adopts a PullRO 
approach and sends the owner an RO interaction to 
request for the value of the shared variable. This 
request will be serviced as in the case of PullRO when 
the owner’s simulation time reaches the request time. 

3.3 Solution 3: PullROTG 
 
In the PullROTG approach, we augment the PullRO 
solution with a time-guarantee feature. Each update 
entry in the owner’s history list is now associated with 
a time-guarantee for the valid duration of the entry. 
This time-guarantee is automatically determined by our 
middleware and requires no input from the users. For 
example, if the owner updates a shared variable A at 
time t1, a time-guarantee is also associated to the length 
of validity for the value of A. Initially, without any 
additional information from the user, the middleware 
cannot assign any effective time-guarantee to the value 
of A at the point of the update. Hence, the update entry 
for A at time t1 is associated with a time-guarantee of 
t1, effectively representing a time-guarantee of zero. 
 
However, if the owner subsequently updates the shared 
variable A at time t2, the entry of A at time t1 in the 
history list can then be modified to be associated with a 
time-guarantee t2. This means that the update at time t1 
is valid up to time t2.  Each reader, on the other hand, 
will also keep a copy of the shared variable and its 
associated update time and time-guarantee. Suppose a 
reader requests the shared variable at time t3 (t1 �  t3 < 
t2), it will receive an update from the owner with the 
value of the shared variable at time t1 and an associated 
time-guarantee t2. The reader can use this local copy of 
the update for subsequent requests with time smaller 
than t2. 
 
If the owner receives a request with time t > tcurr, where 
tcurr is the current simulation time of the owner, the 
request will first be buffered. The request will be 
serviced when the owner’s simulation time reaches t. 
The value of the shared variable at time t, together with 
the associated time-guarantee, tg, will be forwarded to 
the reader. Note that in this case, the time-guarantee, tg, 
for the update message is computed as follows: 
 
 tg = min(tNER, tMNE)                             (1) 
 
where tNER is the cutoff time specified by the owner 
federate when invoking any of the RTI time 
advancement APIs; and tMNE is the time obtained by 
invoking the RTI:queryMinNextEventTime(). One 
assumption made here is that if the owner federate is at 
simulation time t and asks the RTI for time advance to 
time tNER, it will not update its shared variables 
between t and tNER.  
 
3.4 Solution 4: PushROTG 
 
Similarly, we also augment the PushRO solution with 
the time-guarantee feature. In the PushROTG 
approach, each update entry in the future list 
maintained by a reader is also associated with a time-
guarantee.  Note that each of these updates received 
from the owner initially carries no effective time-
guarantee, i.e. the time-guarantee is the same as the 
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Figure 3: RTI+ Middleware 
update time. However, whenever a new update is 
received from the owner, the time-guarantee for the 
previous entry in the future list is associated with the 
update time of the newly received update. We note that 
this form of time-guarantee offers no distinct 
advantage over the PushRO approach whenever the 
reader runs behind the owner in simulation time since 
the search for a match between two consecutive entries 
in the future list already uses the concept of time-
guarantee implicitly.  
 
However, whenever a reader runs ahead of the owner, 
it adopts the PullRO approach and sends a request to 
the owner. The update message it receives from the 
owner has a time-guarantee computed using equation 
1. This update message will be placed at the top of the 
future list. The time-guarantee provided by this update 
can further reduce the number of request messages 
being forwarded to the owner.  
 
4 IMPLEMENTATION ISSUES 
 
In this section, we discuss the implementation issues of 
providing shared state support using the four solutions 
in a middleware for HLA-based distributed simulation. 
We will first describe the RTI+ middleware that 
supports shared state in Section 4.1. The 
implementation of the four solutions in RTI+ will be 
described in Section 4.2. Section 4.3 describes how 
some of the methods in RTI+ should be implemented 
in order to preserve the semantics of the HLA-RTI 
APIs. Section 4.4 discusses the implementation issues 
for fossil collection and late arriving federates. 
 
4.1 Middleware to Support Shared State 
 
Figure 2 shows how a simulation federate is typically 
integrated with the HLA-RTI. The simulation federate 
can send interactions or object updates to other 
federates through the RTI using the RTI ambassador. 
Conversely, the RTI delivers interactions or object 
updates to the simulation federate via the federate 
ambassador (implemented as callback functions by the 
simulation federate). 

 
We extended the HLA-RTI architecture with a 
middleware layer, which we refer to as the RTI+. 
Figure 3 shows the extended HLA-RTI architecture. In 
the extended architecture, all outgoing interactions 
from the simulation federate to the RTI are routed 
through the RTI ambassador+. All incoming 
interactions from the RTI to the simulation federate are 
routed through the federate ambassador+. Both the RTI 
ambassador+ and the federate ambassador+ support the 
full set of interfaces in RTI ambassador and federate 
ambassador respectively.  All four solutions described 
in the previous section, together with the PullTSO 
solution, are implemented in the RTI+. 
 
For the rest of this paper, we will use the format RTI:xxx 
and FebAmb:xxx to denote methods in the original RTI 
library; and RTI+:xxx and  FebAmb+:xxx to denote 
methods in the RTI+ middleware. Some of the 
interfaces are extended in the RTI+ library in order to 
support shared state. For example, the 
RTI+:registerObjectInstance method is extended to create 
a history list for objects at an owner federate, and a 
future list for objects at a reader federate.  
 
Two additional methods are also provided in the RTI 
ambassador+ to allow a simulation federate to request 
for an object or class update at a specific simulation 
time. Figure 4 shows the APIs of these two methods. 
 
 
void requestObjectAttributeValueUpdate(ObjectHandle              
                                    theObject, RTI::FedTime theTime) 
 
void requestClassAttributeValueUpdate(ClassHandle  
                                    theClass, RTI::FedTime theTime) 

 
Figure 4: Shared State APIs for RTI+ 
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Using the PullTSO approach, both methods will be 
translated to a TSO interaction that is sent from the 
reader to the owner. This interaction contains the 
object/class handle that the reader is requesting, and 
the simulation time at which the value is needed. 
Figure 5 illustrates this mechanism. A call to the 
RTI+:requestObjectAttributeValueUpdate method in the 
middleware is translated to a TSO RTI:sendInteraction 
call in the original RTI ambassador at the reader 
federate. A FebAmb+:receiveInteraction callback is 
triggered in the middleware’s federate ambassador at 
the owner side. The middleware at the owner federate 
processes the request by replying through a call to 
RTI:updateAttributeValue. Note that the 
FebAmb+:receiveInteraction is not allowed to call the 
RTI:updateAttributeValue within the federate 
ambassador+. Hence, the middleware needs to first 
record the request, and processes it once control is 
returned to the RTI ambassador+. Control is transferred 
to the middleware when the user invokes the RTI+:tick 
method. The RTI+:tick method needs to perform two 
tasks: 1) process all pending requests from external 
readers in the method RTI+:processSysInteraction; and 2) 
yield control to the RTI by calling the original RTI:tick 
method. 
 
4.2 Implementation using RO Messages 
 
In this section, we discuss the implementation using 
RO messages to deliver the request-reply messages 
between owners and readers of shared variables. While 
the details of the implementation are illustrated using 
the PullRO solution, the same principle applies to the 
other three solutions. 
 
Figure 6 illustrates the sequence of method calls to 
implement the PullRO approach. Note that the entry 
and exit points to the sequence of method calls are the 
same as those in Figure 5. This means that the 
underlying solutions used to support shared state in the 
middleware is transparent to the user. The middleware 
at the reader federate translates the TSO request call to 
an RO RTI:sendInteraction. The owner federate in turn 
replies to the reader using an RO 
RTI:updateAttributeValue.  

 
At the reader end, once a request is issued, the reader is 
not allowed to progress in time, until it receives the 
update that corresponds to its request. This is realized 
by keeping track of pending requests, and withholding 
the time advance request (a primitive in RTI that 
federates use to try to advance their time) until the 
request is received. 
 
4.3 Semantics of RTI APIs 
 
The semantics of RTI APIs has to be preserved when 
implementing support for shared state in the RTI+ 
middleware no matter which solutions the user chooses 
to use. A naive implementation may alter the semantics 
of the original RTI APIs. We illustrate this issue using 
the implementation of RTI+:tick. As mentioned in the 
previous section, the RTI+:tick method needs to perform 
two specific tasks, RTI+:processSysInteraction and call 
RTI:tick. However, the order in which these two tasks 
are carried out will potentially violate the specification 
of the RTI APIs. 
 
Suppose the tick method is implemented such that the 
RTI+:processSysInteraction task is executed first, 
followed by the call to the original RTI:tick method.  
Consider the example in Figure 7 showing a sequence 
of method calls from an owner federate using the 
PullTSO approach. The owner federate first requests 
for time advance to simulation time 4. The RTI+ 
middleware will forward the request to the RTI. The 
owner federate subsequently yields control to the RTI+ 
middleware by calling the RTI+:tick method. The 
RTI+:processSysInteraction subtask in the RTI+:tick method 
does nothing since there is no pending request. 
However, when the original RTI:tick method is called, a 
TSO interaction carrying a request from a reader to 
access a shared variable at simulation time 3 is 
delivered. Note that this request will not be processed 
until the next call to RTI+:processSysInteraction. The 
owner federate is subsequently granted a time advance 
to simulation time 4. 
 
Suppose the owner next issues a time advance request 
to advance to simulation time 8, and proceeds to yield 
control to the RTI+ middleware by calling the RTI+:tick 

Figure 6: The PullRO Approach 
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method. In the RTI+:processSysInteraction method, the 
request from the reader at simulation time 3 is 
processed. This results in a TSO object update event 
time-stamped at 3 being sent out to the reader.  
 
However, sending out the TSO event time-stamped at 3 
will immediately cause the RTI to generate an 
“InvalidFedTime”  exception. The reason for this is that 
after the middleware invokes the method 
RTI:timeAdvanceRequest with request time 8, it “may not 
generate TSO events whose time stamps are less than 
the requested time plus the federate’s lookahead” 
(DMSO 2002). Thus, the request at simulation time 3 
should not have been sent out whilst the 
RTI:timeAdvanceRequest with request time 8 is in 
progress. 
 
The correct approach to implementing the RTI:tick 
method would be to reverse the order of executing the 
two tasks. In the example above, executing RTI:tick 
before RTI+:processSysInteraction would allow RTI to 
deliver the request at time 3 to the owner federate. This 
request would be processed by the 
RTI+:processSysInteraction that executes next. The 
middleware at the owner federate will generate an 
object update at simulation time 3 and send it to the 
reader before the owner federate is granted an advance 
to simulation time 4. 
 
4.4 Late Arriving Federates and Fossil 

Collection 
 
Other implementation issues that have to be addressed 
are the problem of late arriving federates and fossil 

collection. We will describe how these two issues are 
resolved in this section. 
 
In the initial implementation of the PushRO and 
PushROTG solutions, an assumption is that the reader 
will receive all updates from the owner federate. The 
only situation in which a reader actively requests 
values of a shared variable from the owner is when the 
reader runs ahead of the owner and all the cached 
values of the shared variable in the reader’s future list 
have time-stamp (or time-guarantee) smaller than its 
simulation time.  
 
However, the RTI also allows federates to join at any 
time an existing running federation. Such federates are 
termed as late arriving federates. Suppose one of the 
reader federates is a late arriving federate which joins 
the federation at simulation time t. If the owner 
federate is at simulation time t1 (t1 

�
 t), some of the 

updates sent from the owner between t and t1 may be 
“ lost”  to the reader federate.   
 
To handle this problem, an owner federate employing 
the PushRO or PushROTG scheme must also keep a 
history list for all its shared variables. A new reader 
federate which joins the federation midway will 
request for the values of shared variables using the 
same approach as in the case of PullRO and 
PullROTG. 
 
The entries for each update to a shared variable are 
kept in a history list at an owner federate or in a future 
list at a reader federate. The memory used by the 
outdated entries has to be fossil collected periodically. 
While an owner federate has to keep those entries with 
time-stamp greater than the smallest federate time of 
all its readers (in all four RO solutions), a reader 
federate needs only to keep those entries with time-
stamp greater than its own federate time. The federate 
times of individual reader federates can be obtained by 
accessing services provided by the Management Object 
Model (Fullford and Wetzel 1999) in order to 
determine the reader federate with the smallest time-
stamp. 
 
5 EXPERIMENTAL RESULTS 
 
Experiments were carried out to compare the 
performance of the four solutions using RO messages 
against the PullTSO approach. The experiments were 
carried out using the DMSO RTI 1.3-NG version 5. 
The simulation model consists of two federates: an 
owner federate and a reader federate. The owner 
federate updates a shared variable every 100 time units, 
while the reader federate accesses the shared variable 
every 100r time units, where r is the request ratio. We 
experimented with different request ratios r = (0.1, 0.2, 
0.5, 1.0, 2.0, 5.0, 10.0). We also experimented with 
different lookaheads between the two federates. The 
lookahead is modelled by sending a TSO user 
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Figure 7: Semantics of RTI APIs 
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 Lookahead=100 
Request Ratio 0.1 0.2 0.5 

PullRO 99999 49999 19999 
PullROTG 19744 21041 17307 
PushRO 25122 23720 19900 

PushROTG 13972 13607 10698 
    
 Lookahead=1000 

Request Ratio 0.1 0.2 0.5 
PullRO 99999 49999 19999 

PullROTG 10000 10000 10000 
PushRO 34 12620 19730 

PushROTG 35 10000 10000 

 
Table 1: No. of Requests Received by the  

Owner Federate 
 

interaction from the owner to the reader each time the 
owner updates the shared variable. We experimented 
with different values of lookaheads l = (0, 10, 100, 
1000). If the owner updates the shared variable at 
simulation time t, then the user interaction is time-
stamped with the simulation time t+l. 
 
Figures 8, 9 and 10 show the execution time ratios 
using the four solutions for different values of 
lookaheads. The execution time ratio is the ratio 
between the execution time of the respective RO 
solutions against the execution time using PullTSO. 
Hence the PullTSO version is depicted with an 

execution time ratio of 1.0. Table 1 shows the number 
of requests received by the owner federate for request 
ratios 0.1, 0.2 and 0.5. 
 
From the three graphs, we see that the execution times 
of the four RO solutions generally decrease compared 
to the PullTSO approach as the minimum lookahead of 
the system is increased from 10 to 1000. This shows 
that the RO solutions free the owner and reader 
federates from one source of zero lookahead caused by 
the sending of a TSO request-reply message and allows 
them to regulate the federation with the lookahead 
imposed by the user interaction sent from the owner to 
the reader federate.    
 
For small request ratios, the reader federate requests 
the values of the shared variable more frequently than 
the updates by the owner federate. This results in a 
large number of request messages being sent from the 
reader to the owner if PullRO is used. However, this 
scenario favors the PushRO solution since updates only 
need to be sent out infrequently. Most of the accesses 
to the shared variable by the reader federate can be 
fulfilled by the middleware using entries in the future 
list without the need to request new values from the 
owner federate. The graphs also show that the 
PullROTG solution is also able to deliver performance 
comparable to that of the PushRO. The time-guarantee 
provided by the owner federate is used effectively to 
satisfy requests from the reader federate without the 
need to request updates from the owner federate.  
 
Table 1 confirms that the number of requests received 
by the owner federate is significantly fewer using the 
PushRO version compared to the PullRO version for 
small request ratios. The number of requests using the 
PullROTG solution is also comparable to that of the 
PushRO version for lookahead=1000. The additional 
time-guarantee provided by the PushROTG solution 
further reduces the number of requests received by the 
owner federate.  
For large request ratios, the performance of both 
PullRO and PullROTG solutions are consistently better 
than the PushRO and PushROTG solutions.  In fact, for 

Figure 8: Execution timeio vs Request 
Ratio (Lookahead = 10) 

Figure 10: Execution time ratio vs Request 
Ratio (Lookahead = 1000) 

 

Figure 9: Execution time ratio vs Request 
Ratio (Lookahead = 100) 
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the runs with lookaheads = 10 and 100 and request 
ratio r 

�
 5.0, both PushRO and PushROTG yield worse 

performance compared to the PullTSO solution.  In this 
case, the owner updates the value of the shared variable 
more often than the reader accesses it. Thus, most of 
the updates from the owner received by the reader in 
the PushRO or PushROTG versions are redundant.  
 
6 CONCLUSION 
 
In this paper, a middleware approach to support shared 
state in an HLA-based distributed simulation has been 
described. Detailed discussions for some issues in 
implementing the four RO solutions in the middleware 
are also presented. Our experiments show that the four 
RO solutions proposed and implemented in the RTI+ 
middleware are indeed much more efficient compared 
to the PullTSO approach.  The experimental results 
also show that the additional time-guarantee provided 
by the PullROTG solution allows further performance 
improvement compared to the PullRO solution when 
the request ratio is small.  
 
This middleware approach for shared state will also be 
tested on more realistic simulation models to better 
evaluate the effectiveness of the four solutions. Further 
work will also be carried out to explore the possibility 
of applying similar techniques to address the issue of 
remote write.  
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