
IMPLEMENTATION ISSUES FOR SHARED STATE IN
HLA-BASED DISTRIBUTED SIMULATION

Malcolm Yoke Hean Low
Boon Ping Gan

Singapore Institute of

Manufacturing Technology
71 Nanyang Drive, Singapore 638075

Junhu Wei, Xiaoguang Wang,
Stephen John Turner, Wentong Cai

School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798

KEYWORDS

Shared State, Distributed Simulation, High Level
Architecture, Zero Lookahead.

ABSTRACT

The problem of shared state is well known to the
parallel and distributed simulation research
community. In this paper, we revisit the problem of
shared state in the context of a High Level Architecture
based distributed simulation. A middleware approach
is proposed to solve this problem within the framework
of the High Level Architecture Runtime Infrastructure.
Four solutions to this problem are implemented in the
middleware using receive-order messages. We will
discuss the implementation issues of these four
solutions in the middleware. Experimental results
comparing the performance of these four solutions
against a simple request-reply approach using time-
stamp-order messages are also presented.

1 INTRODUCTION

Simulation has traditionally been used as a tool to
perform “what if” analysis in complex systems such as
the operations of a manufacturing production facility.
In a supply chain scenario with multiple business
partners each with its own manufacturing production
facility, it is not sufficient for each business partner in
the supply chain to optimize its operation using
simulation. In order to optimize the performance of the
whole supply chain, these simulation models need to
be integrated before any meaningful analysis can be
made. Physically integrating these simulation models
into a single simulation environment is often not
possible due to 1) the complexity of individual models;
2) business partners being geographically dispersed;
and 3) confidentiality in sharing certain parts of the
simulation model. Distributed simulation offers a
solution to this problem by allowing existing
simulation models to be reused and integrated with
other simulation models in the supply chain through
well-defined interfaces. Each supply chain simulation
can also selectively expose only the necessary data to
other partners in the supply chain simulation.

An emerging standard for distributed simulation,
namely the High Level Architecture (HLA) standard
has been proposed by the U.S. Department of Defense
(DoD) (Kuhl et al. 1999). The HLA defines the rules
and specifications to support reusability and
interoperability of different simulators. In HLA
terminology, a single simulator is referred to as a
federate. A federation is then a set of federates working
together to achieve a given goal. Each federate defines
the objects and interactions that are shared in its
simulation object model (SOM) and interacts with one
another over the Runtime Infrastructure (RTI) (DMSO
2002).

The problem of shared state is a well-known problem
in both the parallel, as well as the distributed
simulation research community. In the context of an
HLA-based distributed simulation, the issue involves
the following: an “owner” federate updates a local
shared variable periodically and multiple remote
“reader” federates can access the value of the shared
variable instantaneously (at the same simulation time
as the read). For the rest of this paper, we assume that
the HLA-based distributed simulation runs on an RTI
that uses a conservative synchronization protocol for
its time management service.

Figure 1 shows a straightforward implementation to
support shared state in an HLA-based distributed
simulation using a set of time-stamp-order (TSO)
request-reply interactions both time-stamped at the
simulation time t. In the example, the owner federate
updates a shared variable s periodically, and also sends
a TSO event e to the reader federate periodically with a
lookahead of L. At simulation time t, the reader
federate accesses the value of the shared variable s by

Figure 1: Request-Reply using TSO Messages

e@t+L

request(s)@t

Owner Reader

reply(s)@t

sending a TSO request message time-stamped at t. The
owner federate, on receiving the request message, will
issue a TSO object update with simulation time t. We
refer to this approach to support shared state on an
HLA-based distributed simulation as the PullTSO
approach.

In order for the PullTSO scheme to work, both the
owner and the reader federates must be time-
constrained and must regulate the federation with a
lookahead of zero. However, having zero-lookahead in
a federation is often detrimental to the performance of
the simulation system whether the underlying RTI is
using conservative or optimistic time synchronization.
Suppose the request-reply TSO messages in Figure 1
are replaced by receive-order (RO) messages. Since
RO messages are not used by the RTI to check
lookahead and the time advancement constraint on
each federate, the owner federate can regulate the
federation with a lookahead of L instead.

In this paper, we address the issue of shared state in an
HLA-based distributed simulation by replacing the
TSO request-reply messages in the PullTSO approach
with RO messages. We propose a middleware
approach to support shared state. We will outline four
solutions to support shared state within the
middleware. While the use of the middleware approach
is to hide the implementation of the support for shared
state from the users, it must also preserve the semantics
of the different RTI APIs that are used by the users.
We will explain how this can be achieved in the
middleware using an example. The performance of the
solutions proposed will also be compared against that
of the PullTSO approach.

The rest of the paper is organized as follows. Section 2
describes some related work in solving the shared state
problem. Our solutions to shared state using the
middleware approach will be described in Section 3. In
Section 4, we discuss some issues in implementing the
solutions in the middleware. Experimental results
comparing our solutions to the PullTSO approach will
be presented in Section 5. We conclude this paper in
Section 6 and outline further work in this area.

2 RELATED WORK

The issue of shared state has been explored in the
context of several parallel simulation research projects.
For example, in the work by Mehl and Hammes (Mehl
and Hammes 1993), they proposed two general
approaches to implement shared variables using a
conservative synchronization algorithm, namely 1)
request-reply and 2) cached-copy. In the request-reply
approach, the owner keeps a history list of the shared
variable. When a reader requests the shared variable at
simulation time t, the owner will wait until it is certain
that no other write messages will be received with
simulation time smaller than t before it retrieves the

value of the shared variable at time t from its history
list and forwards the reply to the reader.

The request-reply approach frees the owner from the
time constraints from its readers and allows the owner
to proceed ahead of its readers whenever possible.
However, a reader has to always suspend itself
whenever it needs to access the value of the shared
variable from the owner. The cached-copy approach
proposed by Mehl and Hammes solves this problem by
having each reader keep a cached-copy of the shared
variable. The cached-copy of the shared variable has a
time-guarantee associated with it. Whenever a reader
needs to access the shared variable, it first checks the
validity of its cached-copy of the shared variable. It
will send a request to the owner if such copy is not
found or the copy is invalid.

Lim et al. (Lim et al. 1998) showed that if the
request/write/reply messages are sent using time-stamp
order, then the request-reply approach proposed by
Mehl and Hammes could function without a history
list. While Mehl and Hammes use a cache-on-demand
policy to update the reader’s local cache copy of the
shared variable, Lim et al. explored an always-update-
by-writer update policy for the cached-copy approach
whereby the owner will forward each update to the
shared variable to all its readers.

The issue of shared variables has also been raised
during the third meeting of the HLA-CSPIF forum
(HLA-CSPIF 2002). The aim of this forum is to create
a standardized approach to distributed simulation using
HLA to support interoperation of discrete event models
created in commercial-off-the-shelf (COTS) simulation
packages. The group is currently looking at specifying
reference models for testing the interoperability of
different simulators. In particular, one of the reference
models under discussion requires the implementation
of shared variables across two or more different COTS
simulation packages.

A preliminary report on the work described in this
paper can be found in Gan et al. (Gan et al. 2003) in
which two of the solutions presented in this paper are
first proposed. In this paper, we extend on our previous
work and propose two more solutions to solving the
shared state problem. We will also discuss
implementation issues to enable support for shared
state in a middleware for RTI.

3 THE SOLUTIONS

Both the request-reply and the cached-copy solutions
proposed by Mehl and Hammes can be implemented
easily under HLA. However, both the request and reply
messages, as well as the update message for the
cached-copy, will have to be sent using TSO
interactions and object updates at the current
simulation time. This implies that both the owner and

reader federates must regulate the federation with zero
lookahead.

In this section, we describe four solutions to solve the
problem of shared state. We will refer to these four
solutions as: 1) PullRO, 2) PushRO, 3) PullROTG and
4) PushROTG. The PullRO and PushRO solutions will
be described briefly as they have previously been
described in detail in Gan et al. (Gan et al. 2003). All
four solutions involve replacing the TSO interactions
and object updates used in the standard request-reply
and cached-copy solutions with RO messages. This
eliminates one source of zero lookaheads in the
federation and allows both the owner federate as well
as the reader federates to regulate the federation with
the next smallest (possibly non-zero) lookahead.
Similar to the work carried out by Lim et al. (Lim et al
1998), our solutions currently assume that the owner is
the only writer for the shared variable. We plan to
eliminate this assumption in the next stage of our work.

3.1 Solution 1: PullRO

In the PullRO approach, whenever a reader needs the
latest value of a shared variable, it sends an RO
interaction to the owner to request for the value at a
specific request time. The owner, on the other hand,
maintains a history list of all the updated values of the
shared variable with their associated update times.
Suppose the owner federate is at simulation time t1 and
it receives a request from a reader with request time t2.
If t1

�
 t2, the owner federate searches its history list for

two consecutive entries with update times tj and tk such
that tj � t2 < tk. An RO object update with the value of
the shared variable at simulation time tj will be sent
back to the reader. If t1 < t2, the request will be buffered
and serviced when the owner’s simulation time reaches
t2.

3.2 Solution 2: PushRO

In the PushRO solution, we use a cached-copy
approach with an always-update-by-writer update
policy similar to that used by Lim et al. (Lim et al.
1998). Whenever the owner updates the shared
variable, it also sends the update to each of its readers.
This update is associated with the timestamp of the
update and is sent using RO interactions or object
updates. As the owner may be sending an update with
timestamp greater than the simulation time of a reader,
each reader must also keep a future list to store the
updates received from the owner.

In situations in which one of the readers runs ahead of
the owner, the reader will not find any valid entry in its
future list. In this case, the reader adopts a PullRO
approach and sends the owner an RO interaction to
request for the value of the shared variable. This
request will be serviced as in the case of PullRO when
the owner’s simulation time reaches the request time.

3.3 Solution 3: PullROTG

In the PullROTG approach, we augment the PullRO
solution with a time-guarantee feature. Each update
entry in the owner’s history list is now associated with
a time-guarantee for the valid duration of the entry.
This time-guarantee is automatically determined by our
middleware and requires no input from the users. For
example, if the owner updates a shared variable A at
time t1, a time-guarantee is also associated to the length
of validity for the value of A. Initially, without any
additional information from the user, the middleware
cannot assign any effective time-guarantee to the value
of A at the point of the update. Hence, the update entry
for A at time t1 is associated with a time-guarantee of
t1, effectively representing a time-guarantee of zero.

However, if the owner subsequently updates the shared
variable A at time t2, the entry of A at time t1 in the
history list can then be modified to be associated with a
time-guarantee t2. This means that the update at time t1
is valid up to time t2. Each reader, on the other hand,
will also keep a copy of the shared variable and its
associated update time and time-guarantee. Suppose a
reader requests the shared variable at time t3 (t1 � t3 <
t2), it will receive an update from the owner with the
value of the shared variable at time t1 and an associated
time-guarantee t2. The reader can use this local copy of
the update for subsequent requests with time smaller
than t2.

If the owner receives a request with time t > tcurr, where
tcurr is the current simulation time of the owner, the
request will first be buffered. The request will be
serviced when the owner’s simulation time reaches t.
The value of the shared variable at time t, together with
the associated time-guarantee, tg, will be forwarded to
the reader. Note that in this case, the time-guarantee, tg,
for the update message is computed as follows:

 tg = min(tNER, tMNE) (1)

where tNER is the cutoff time specified by the owner
federate when invoking any of the RTI time
advancement APIs; and tMNE is the time obtained by
invoking the RTI:queryMinNextEventTime(). One
assumption made here is that if the owner federate is at
simulation time t and asks the RTI for time advance to
time tNER, it will not update its shared variables
between t and tNER.

3.4 Solution 4: PushROTG

Similarly, we also augment the PushRO solution with
the time-guarantee feature. In the PushROTG
approach, each update entry in the future list
maintained by a reader is also associated with a time-
guarantee. Note that each of these updates received
from the owner initially carries no effective time-
guarantee, i.e. the time-guarantee is the same as the

Simulation Federate

Federate
Ambassador

RTI
Ambassador

Runtime Infrastructure

Figure 2: Architecture of RTI

Simulation Federate

RTI
Ambassador+

Federate
Ambassador

RTI
Ambassador

Federate
Ambassador+

Runtime Infrastructure

Figure 3: RTI+ Middleware
update time. However, whenever a new update is
received from the owner, the time-guarantee for the
previous entry in the future list is associated with the
update time of the newly received update. We note that
this form of time-guarantee offers no distinct
advantage over the PushRO approach whenever the
reader runs behind the owner in simulation time since
the search for a match between two consecutive entries
in the future list already uses the concept of time-
guarantee implicitly.

However, whenever a reader runs ahead of the owner,
it adopts the PullRO approach and sends a request to
the owner. The update message it receives from the
owner has a time-guarantee computed using equation
1. This update message will be placed at the top of the
future list. The time-guarantee provided by this update
can further reduce the number of request messages
being forwarded to the owner.

4 IMPLEMENTATION ISSUES

In this section, we discuss the implementation issues of
providing shared state support using the four solutions
in a middleware for HLA-based distributed simulation.
We will first describe the RTI+ middleware that
supports shared state in Section 4.1. The
implementation of the four solutions in RTI+ will be
described in Section 4.2. Section 4.3 describes how
some of the methods in RTI+ should be implemented
in order to preserve the semantics of the HLA-RTI
APIs. Section 4.4 discusses the implementation issues
for fossil collection and late arriving federates.

4.1 Middleware to Support Shared State

Figure 2 shows how a simulation federate is typically
integrated with the HLA-RTI. The simulation federate
can send interactions or object updates to other
federates through the RTI using the RTI ambassador.
Conversely, the RTI delivers interactions or object
updates to the simulation federate via the federate
ambassador (implemented as callback functions by the
simulation federate).

We extended the HLA-RTI architecture with a
middleware layer, which we refer to as the RTI+.
Figure 3 shows the extended HLA-RTI architecture. In
the extended architecture, all outgoing interactions
from the simulation federate to the RTI are routed
through the RTI ambassador+. All incoming
interactions from the RTI to the simulation federate are
routed through the federate ambassador+. Both the RTI
ambassador+ and the federate ambassador+ support the
full set of interfaces in RTI ambassador and federate
ambassador respectively. All four solutions described
in the previous section, together with the PullTSO
solution, are implemented in the RTI+.

For the rest of this paper, we will use the format RTI:xxx
and FebAmb:xxx to denote methods in the original RTI
library; and RTI+:xxx and FebAmb+:xxx to denote
methods in the RTI+ middleware. Some of the
interfaces are extended in the RTI+ library in order to
support shared state. For example, the
RTI+:registerObjectInstance method is extended to create
a history list for objects at an owner federate, and a
future list for objects at a reader federate.

Two additional methods are also provided in the RTI
ambassador+ to allow a simulation federate to request
for an object or class update at a specific simulation
time. Figure 4 shows the APIs of these two methods.

void requestObjectAttributeValueUpdate(ObjectHandle
 theObject, RTI::FedTime theTime)

void requestClassAttributeValueUpdate(ClassHandle
 theClass, RTI::FedTime theTime)

Figure 4: Shared State APIs for RTI+

Reader Owner

RTI+:requestObjectAttributeValueUpdate(t)

RTI:sendInteraction(t)

FedAmb+:reflectAttributeValue(t)

FedAmb:reflectAttributeValue(t)

FebAmb+:receiveInteraction(t)

RTI:updateAttributeValue(t)

Figure 5: The PullTSO Approach

Using the PullTSO approach, both methods will be
translated to a TSO interaction that is sent from the
reader to the owner. This interaction contains the
object/class handle that the reader is requesting, and
the simulation time at which the value is needed.
Figure 5 illustrates this mechanism. A call to the
RTI+:requestObjectAttributeValueUpdate method in the
middleware is translated to a TSO RTI:sendInteraction
call in the original RTI ambassador at the reader
federate. A FebAmb+:receiveInteraction callback is
triggered in the middleware’s federate ambassador at
the owner side. The middleware at the owner federate
processes the request by replying through a call to
RTI:updateAttributeValue. Note that the
FebAmb+:receiveInteraction is not allowed to call the
RTI:updateAttributeValue within the federate
ambassador+. Hence, the middleware needs to first
record the request, and processes it once control is
returned to the RTI ambassador+. Control is transferred
to the middleware when the user invokes the RTI+:tick
method. The RTI+:tick method needs to perform two
tasks: 1) process all pending requests from external
readers in the method RTI+:processSysInteraction; and 2)
yield control to the RTI by calling the original RTI:tick
method.

4.2 Implementation using RO Messages

In this section, we discuss the implementation using
RO messages to deliver the request-reply messages
between owners and readers of shared variables. While
the details of the implementation are illustrated using
the PullRO solution, the same principle applies to the
other three solutions.

Figure 6 illustrates the sequence of method calls to
implement the PullRO approach. Note that the entry
and exit points to the sequence of method calls are the
same as those in Figure 5. This means that the
underlying solutions used to support shared state in the
middleware is transparent to the user. The middleware
at the reader federate translates the TSO request call to
an RO RTI:sendInteraction. The owner federate in turn
replies to the reader using an RO
RTI:updateAttributeValue.

At the reader end, once a request is issued, the reader is
not allowed to progress in time, until it receives the
update that corresponds to its request. This is realized
by keeping track of pending requests, and withholding
the time advance request (a primitive in RTI that
federates use to try to advance their time) until the
request is received.

4.3 Semantics of RTI APIs

The semantics of RTI APIs has to be preserved when
implementing support for shared state in the RTI+
middleware no matter which solutions the user chooses
to use. A naive implementation may alter the semantics
of the original RTI APIs. We illustrate this issue using
the implementation of RTI+:tick. As mentioned in the
previous section, the RTI+:tick method needs to perform
two specific tasks, RTI+:processSysInteraction and call
RTI:tick. However, the order in which these two tasks
are carried out will potentially violate the specification
of the RTI APIs.

Suppose the tick method is implemented such that the
RTI+:processSysInteraction task is executed first,
followed by the call to the original RTI:tick method.
Consider the example in Figure 7 showing a sequence
of method calls from an owner federate using the
PullTSO approach. The owner federate first requests
for time advance to simulation time 4. The RTI+
middleware will forward the request to the RTI. The
owner federate subsequently yields control to the RTI+
middleware by calling the RTI+:tick method. The
RTI+:processSysInteraction subtask in the RTI+:tick method
does nothing since there is no pending request.
However, when the original RTI:tick method is called, a
TSO interaction carrying a request from a reader to
access a shared variable at simulation time 3 is
delivered. Note that this request will not be processed
until the next call to RTI+:processSysInteraction. The
owner federate is subsequently granted a time advance
to simulation time 4.

Suppose the owner next issues a time advance request
to advance to simulation time 8, and proceeds to yield
control to the RTI+ middleware by calling the RTI+:tick

Figure 6: The PullRO Approach

Reader Owner

RTI+:requestObjectAttributeValueUpdate(t)

RTI:sendInteraction()

FedAmb+:reflectAttributeValue()

FedAmb:reflectAttributeValue(t)

FebAmb+:receiveInteraction()

RTI:updateAttributeValue()

method. In the RTI+:processSysInteraction method, the
request from the reader at simulation time 3 is
processed. This results in a TSO object update event
time-stamped at 3 being sent out to the reader.

However, sending out the TSO event time-stamped at 3
will immediately cause the RTI to generate an
“InvalidFedTime” exception. The reason for this is that
after the middleware invokes the method
RTI:timeAdvanceRequest with request time 8, it “may not
generate TSO events whose time stamps are less than
the requested time plus the federate’s lookahead”
(DMSO 2002). Thus, the request at simulation time 3
should not have been sent out whilst the
RTI:timeAdvanceRequest with request time 8 is in
progress.

The correct approach to implementing the RTI:tick
method would be to reverse the order of executing the
two tasks. In the example above, executing RTI:tick
before RTI+:processSysInteraction would allow RTI to
deliver the request at time 3 to the owner federate. This
request would be processed by the
RTI+:processSysInteraction that executes next. The
middleware at the owner federate will generate an
object update at simulation time 3 and send it to the
reader before the owner federate is granted an advance
to simulation time 4.

4.4 Late Arriving Federates and Fossil

Collection

Other implementation issues that have to be addressed
are the problem of late arriving federates and fossil

collection. We will describe how these two issues are
resolved in this section.

In the initial implementation of the PushRO and
PushROTG solutions, an assumption is that the reader
will receive all updates from the owner federate. The
only situation in which a reader actively requests
values of a shared variable from the owner is when the
reader runs ahead of the owner and all the cached
values of the shared variable in the reader’s future list
have time-stamp (or time-guarantee) smaller than its
simulation time.

However, the RTI also allows federates to join at any
time an existing running federation. Such federates are
termed as late arriving federates. Suppose one of the
reader federates is a late arriving federate which joins
the federation at simulation time t. If the owner
federate is at simulation time t1 (t1

�
 t), some of the

updates sent from the owner between t and t1 may be
“ lost” to the reader federate.

To handle this problem, an owner federate employing
the PushRO or PushROTG scheme must also keep a
history list for all its shared variables. A new reader
federate which joins the federation midway will
request for the values of shared variables using the
same approach as in the case of PullRO and
PullROTG.

The entries for each update to a shared variable are
kept in a history list at an owner federate or in a future
list at a reader federate. The memory used by the
outdated entries has to be fossil collected periodically.
While an owner federate has to keep those entries with
time-stamp greater than the smallest federate time of
all its readers (in all four RO solutions), a reader
federate needs only to keep those entries with time-
stamp greater than its own federate time. The federate
times of individual reader federates can be obtained by
accessing services provided by the Management Object
Model (Fullford and Wetzel 1999) in order to
determine the reader federate with the smallest time-
stamp.

5 EXPERIMENTAL RESULTS

Experiments were carried out to compare the
performance of the four solutions using RO messages
against the PullTSO approach. The experiments were
carried out using the DMSO RTI 1.3-NG version 5.
The simulation model consists of two federates: an
owner federate and a reader federate. The owner
federate updates a shared variable every 100 time units,
while the reader federate accesses the shared variable
every 100r time units, where r is the request ratio. We
experimented with different request ratios r = (0.1, 0.2,
0.5, 1.0, 2.0, 5.0, 10.0). We also experimented with
different lookaheads between the two federates. The
lookahead is modelled by sending a TSO user

timeAdvanceRequest(8)

Figure 7: Semantics of RTI APIs

processSysInteraction()

RTI+/FebAmb+
+

UserFed/FedAmb

timeAdvanceRequest(8)

RTI

tick()

tick()

timeAdvanceGrant(8) timeAdvanceGrant(8)

updateAttributeValue(3)

tick()

processSysInteraction()

tick()

 request@3

timeAdvanceGrant(4) timeAdvanceGrant(4)

timeAdvanceRequest(4) timeAdvanceRequest(4)

 Lookahead=100
Request Ratio 0.1 0.2 0.5

PullRO 99999 49999 19999
PullROTG 19744 21041 17307
PushRO 25122 23720 19900

PushROTG 13972 13607 10698

 Lookahead=1000

Request Ratio 0.1 0.2 0.5
PullRO 99999 49999 19999

PullROTG 10000 10000 10000
PushRO 34 12620 19730

PushROTG 35 10000 10000

Table 1: No. of Requests Received by the

Owner Federate

interaction from the owner to the reader each time the
owner updates the shared variable. We experimented
with different values of lookaheads l = (0, 10, 100,
1000). If the owner updates the shared variable at
simulation time t, then the user interaction is time-
stamped with the simulation time t+l.

Figures 8, 9 and 10 show the execution time ratios
using the four solutions for different values of
lookaheads. The execution time ratio is the ratio
between the execution time of the respective RO
solutions against the execution time using PullTSO.
Hence the PullTSO version is depicted with an

execution time ratio of 1.0. Table 1 shows the number
of requests received by the owner federate for request
ratios 0.1, 0.2 and 0.5.

From the three graphs, we see that the execution times
of the four RO solutions generally decrease compared
to the PullTSO approach as the minimum lookahead of
the system is increased from 10 to 1000. This shows
that the RO solutions free the owner and reader
federates from one source of zero lookahead caused by
the sending of a TSO request-reply message and allows
them to regulate the federation with the lookahead
imposed by the user interaction sent from the owner to
the reader federate.

For small request ratios, the reader federate requests
the values of the shared variable more frequently than
the updates by the owner federate. This results in a
large number of request messages being sent from the
reader to the owner if PullRO is used. However, this
scenario favors the PushRO solution since updates only
need to be sent out infrequently. Most of the accesses
to the shared variable by the reader federate can be
fulfilled by the middleware using entries in the future
list without the need to request new values from the
owner federate. The graphs also show that the
PullROTG solution is also able to deliver performance
comparable to that of the PushRO. The time-guarantee
provided by the owner federate is used effectively to
satisfy requests from the reader federate without the
need to request updates from the owner federate.

Table 1 confirms that the number of requests received
by the owner federate is significantly fewer using the
PushRO version compared to the PullRO version for
small request ratios. The number of requests using the
PullROTG solution is also comparable to that of the
PushRO version for lookahead=1000. The additional
time-guarantee provided by the PushROTG solution
further reduces the number of requests received by the
owner federate.
For large request ratios, the performance of both
PullRO and PullROTG solutions are consistently better
than the PushRO and PushROTG solutions. In fact, for

Figure 8: Execution timeio vs Request
Ratio (Lookahead = 10)

Figure 10: Execution time ratio vs Request
Ratio (Lookahead = 1000)

Figure 9: Execution time ratio vs Request
Ratio (Lookahead = 100)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Request Ratio (r)

0.0
0.2
0.4
0.6

0.8
1.0
1.2

0.1 0.2 0.5 1.0 2.0 5.0 10.0

Request Ratio (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.2 0.5 1.0 2.0 5.0 10.0

Request Ratio (r)

PullTSO
PullRO
PullROTG
PushRO
PushROTG

PullTSO
PullRO
PullROTG
PushRO
PushROTG

PullTSO
PullRO
PullROTG
PushRO
PushROTG

0.1 0.2 0.5 1.0 2.0 5.0 10.0

the runs with lookaheads = 10 and 100 and request
ratio r

�
 5.0, both PushRO and PushROTG yield worse

performance compared to the PullTSO solution. In this
case, the owner updates the value of the shared variable
more often than the reader accesses it. Thus, most of
the updates from the owner received by the reader in
the PushRO or PushROTG versions are redundant.

6 CONCLUSION

In this paper, a middleware approach to support shared
state in an HLA-based distributed simulation has been
described. Detailed discussions for some issues in
implementing the four RO solutions in the middleware
are also presented. Our experiments show that the four
RO solutions proposed and implemented in the RTI+
middleware are indeed much more efficient compared
to the PullTSO approach. The experimental results
also show that the additional time-guarantee provided
by the PullROTG solution allows further performance
improvement compared to the PullRO solution when
the request ratio is small.

This middleware approach for shared state will also be
tested on more realistic simulation models to better
evaluate the effectiveness of the four solutions. Further
work will also be carried out to explore the possibility
of applying similar techniques to address the issue of
remote write.

REFERENCES

DMSO. 2002. RTI 1.3-Next Generation Programmer’s Guide

Version 5, DoD, DMSO, Feb 2002.

Fullford D. and D. Wetzel. 1999. “A Federation Management

Tool: Using the Management Object Model (MOM) to
Manage, Control, and Monitor a Federation”. In
Proceedings of the 1999 Spring Simulation
Interoperability Workshop, 99S-SIW-196.

Gan B.P.; M.Y.H. Low; J.-H. Wei; X.-G. Wang; S.J. Turner

and W.-T. Cai. 2003. “Synchronization and Management
of Shared State in HLA-Based Distributed Simulation”. To
appear in the 2003 Winter Simulation Conference.

HLA-CSPIF 2002. 3rd Meeting of HLA-CSPIF Forum, 20-21

November 2002, Savill Court Hotel, London.
http://www.cspif.com.

Kuhl F.; R. Weatherly and J. Dahmann. 1999. “Creating

computer simulation systems: An introduction to the High
Level Architecture”. Prentice Hall PTR.

Lim C.C.; Y.H. Low; B.P. Gan and S. Jain. 1998.

“ Implementation of Dispatch Rules in Parallel
Manufacturing Simulation”. In Proceedings of the 1998
Winter Simulation Conference, 1591-1597.

Mehl H. and S. Hammes. 1993. “Shared Variables in

Distributed Simulation”. In Proceedings of 7th Workshop
on Parallel and Distributed Simulation, 68-75.

AUTHOR BIOGRAPHIES

MALCOLM YOKE HEAN LOW is a Research
Engineer with the Production and Logistics Planning
Group at the Singapore Institute of Manufacturing
Technology. He received his Bachelor and Master of
Applied Science in Computer Engineering from
Nanyang Technological University, Singapore in 1996
and 1997 respectively, and a D.Phil. in Computer
Science from Oxford University in 2002. His research
interests are in the areas of adaptive tuning and load-
balancing for parallel and distributed simulation
systems, and the application of multi-agent technology
in supply chain logistics coordination. His email
address is yhlow@SIMTech.a-star.edu.sg.

BOON PING GAN is a Research Engineer with the
Production and Logistics Planning Group at Singapore
Institute of Manufacturing Technology (formerly
known as Gintic Institute of Manufacturing
Technology). He is currently leading a research project
that attempts to apply distributed simulation
technology for supply chain simulation. He received a
Bachelor of Applied Science in Computer Engineering
and Master of Applied Science from Nanyang
Technological University of Singapore in 1995 and
1998 respectively. His research interests are parallel
and distributed simulation, parallel programs
scheduling, and application of genetic algorithms. His
email address is bpgan@SIMTech.a-star.edu.sg.

JUNHU WEI is working with Nanyang Technological
University (Singapore) as a Research Fellow. He
received his BE in Automatic Control and ME in
System Engineering and PhD in Control Engineering
from Xi'an Jiaotong University (China). His current
research interests include parallel and distributed
simulation, Simulation, Planning and Scheduling of
Manufacturing. His email address is
asjhwei@ntu.edu.sg.

XIAOGUANG WANG is currently a Ph.D student at
School of Computer Engineering (SCE), Nanyang
Technological University, Singapore. She received her
B.Sc in Computer Science from Nanjing University of
Aeronautics and Astronautics, China in 1997. Her
research interests lie in Distributed Simulation and
High Level Architecture, which is also her Ph.D topic
currently being developed. Her email address is
PG02355670@ntu.edu.sg.

STEPHEN J. TURNER joined Nanyang
Technological University (Singapore) in 1999 and is
currently an Associate Professor in the School of
Computer Engineering and Director of the Parallel and
Distributed Computing Centre. Previously, he was a
Senior Lecturer in Computer Science at Exeter
University (UK). He received his MA in Mathematics
and Computer Science from Cambridge University
(UK) and his MSc and PhD in Computer Science from

Manchester University (UK). His current research
interests include: parallel and distributed simulation,
distributed virtual environments, grid computing and
multi-agent systems. His email address is
assjturner@ntu.edu.sg.

WENTONG CAI is currently an associate professor
and Head of Software System Division at School of
Computer Engineering (SCE), Nanyang Technological
University (Singapore). He received his B.Sc. in
Computer Science from Nankai University (P. R.
China) and Ph.D. also in Computer Science from
University of Exeter (U.K.). He was a Post-doctoral
Research Fellow at Queen's University (Canada) from
Feb 1991 to Jan 1993, and joined SCE as a lecturer in
Feb 1993. Dr. Cai is a member of IEEE and his current
research interests are mainly in the areas of parallel and
distributed computing, particularly, Parallel &
Distributed Simulation and Grid Computing. His email
address is aswtcai@ntu.edu.sg.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

