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ABSTRACT

Statistical fluctuations of three-dimensional Monte
Carlo simulation results require a sophisticated post-
processing of the obtained data. We present an ad-
vanced algorithm for smoothing Monte Carlo results
of ion implantation and translating them from the in-
ternal ortho-grid of the simulator to an unstructured
grid which is suitable for subsequent process simu-
lation steps. This algorithm allows a more accurate
prediction of doping profiles, which is essential for an
implantation treatment of deep-submicrometer de-
vice structures. Basically, the ion concentration value
on a grid point of the unstructured grid is approxi-
mated by means of Bernstein polynomials, evaluated
in a fast way only in the middle point of that cell
which contains the new grid point. The key idea is
to estimate also the concentration difference between
the new point and the middle point by calculating
the scalar product of the concentration gradient and
the distance vector. In that way, effects based on the
cell discretization can also be significantly reduced,
which leads to more realistic doping profiles. The
impact of the advanced smoothing procedure on the
statistical accuracy for three-dimensional implanta-
tion applications is demonstrated.

INTRODUCTION

Ion implantation is the most important doping tech-
nique for electronic device fabrication, in particular
for ultra large scale integration (ULSI) circuits. The
ongoing trend of scaling device feature sizes down to
the deep-submicrometer regime requires TCAD tools
which provide a more accurate prediction of dop-
ing profiles and a full three-dimensional implantation
treatment.

These requirements drive the improvement and opti-
mization of existing three-dimensional Monte Carlo
simulation tools in the field of ion implantation.
The Monte Carlo method is based on applying ran-
dom behavior at an atomistic level (Hobler and Sel-
berherr 1989), (Ziegler et al. 1995). Particularly, the
position where an ion hits the crystalline target is
calculated using random numbers. Furthermore, the
lattice atoms of the target are in permanent move-
ment due to thermal vibrations. Thus, the actual
positions of the vibrating atoms in the target are
also simulated using random numbers. In this model
the ion implantation process is accurately simulated
by computing a large number N of individual ion
trajectories through a semiconductor material. The
trajectory of each implanted ion is determined by
the interactions with the atoms and electrons of the
target material. The final position of an implanted
ion is reached where it has lost its kinetic energy.
The crystalline model of silicon allows to simulate
the channeling effect during ion implantation. Ad-
ditionally, point defect distributions generated as re-
sults of ion implantation can also be calculated by the
Monte Carlo approach. The Monte Carlo method to
model ion implantation has the advantage of being
a physically based method and therefore it is easily
extendable for new technological conditions without
the need for additional extensive calibration. On the
other hand, long computing times prevent the stan-
dard use of Monte Carlo simulation tools in technol-
ogy optimization.
Based on random numbers, the results obtained with
the Monte Carlo method are never exact but rigor-
ous in a statistical sense. The results converge to the
used model characteristics by increasing the number
N of simulated ions. As with experiments, the errors
on Monte Carlo results are divided into two classes:
statistical errors and systematic errors.
The statistical error is basically determined by the
number N of calculated trajectories. The slow con-
vergence rate of the Monte Carlo method leads to
long simulation runs and produces ion concentration
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estimates which tend to have high variances. The
obvious way to reduce the statistical error is by in-
creasing the number N of simulated ions. This error
vanishes for N → ∞. Speed-up techniques like the
trajectory split method (Bohmayr et al. 1995) or
trajectory reuse method (Hössinger and Selberherr
1999) help to increase N by holding the additional
computational effort within acceptable limits.
On the other hand, systematic errors arise due to
model limitations or insufficient calibration of the
simulator. Model validation or software verification
will not be covered in this work.

Paticularly in three-dimensional applications a worse
statistical representation arises in regions with a do-
pant concentration several orders of magnitudes small-
er than the maximum (projected range). The raw
Monte Carlo results are smoothed through a post-
processing step in order to achieve results with an
acceptable accuracy even in deep regions with a poor
statistical representation of dopants. It turned out
that fluctuations of the original data can effectively
be reduced by using an approximation with Bern-
stein polynomials. We have developed an advanced
smoothing algorithm which extends the Bernstein ap-
proximation by calculating an additional linear ap-
proximation also in a fast manner. This algorithm

helps to significantly reduce the statistical error of
three-dimensional Monte Carlo simulation results.

THE SIMULATOR

All Monte Carlo simulation experiments were per-
formed with the object-oriented, multi-dimensional
ion implantation simulator MCIMPL-II. The simula-
tor is based on a binary collision algorithm and can
handle arbitrary three-dimensional device structures
consisting of several amorphous materials and crys-
talline silicon. In order to optimize the performance,
the simulator uses cells arranged on an ortho-grid
to count the number of implanted ions and of gener-
ated point defects. The final concentration values are
smoothed and translated from the internal ortho-grid
to an unstructured grid suitable for subsequent pro-
cess simulation steps, like finite element simulations
for annealing processes.
Figure 1 shows the data flow during the simulation
of ion implantation. The simulator MCIMPL-II is em-
bedded in a process simulation environment by us-
ing the object-oriented WAFER STATE SERVER li-
brary (Binder and Selberherr 2003), (Binder et al.
2003).
The WAFER STATE SERVER has been developed



in order to integrate several three-dimensional pro-
cess simulation tools used for topography, ion implan-
tation, and annealing simulations. It holds the com-
plete information describing the simulation domain
in a volume mesh discretized format, and it provides
convenient methods to access these data. The idea
is that simulators make use of these access methods
to initialize their internal data structures, and that
the simulators report their modifications of the wafer
structure to the WAFER STATE SERVER. Thereby
a consistent status of the wafer structure can be sus-
tained during the whole process flow.
The meshing strategy of DELINK follows the concept
of advancing front Delaunay methods and produces
tetrahedral grid elements (Fleischmann and Selber-
herr 2002).

ADVANCED SMOOTHING ALGORITHM

The smoothing of the raw Monte Carlo result is per-
formed by approximating the concentration value on
a grid point of the unstructured grid by means of
Bernstein polynomials defined in a cubical surround-
ing space (Heitzinger et al. 2003). The Bernstein
polynomial Bf,n,n,n(x1, x2, x3) approximates a func-
tion f of 3 variables, where n ∈ N are the concen-
tration sample points in each dimension. The Bern-
stein approximation Bf,n,n,n is specified by n3 sam-
ple points whereby Bf,n,n,n does not run through
the sample points, but each of them affects the ap-
proximated function. Such sample points are usually
called control points, since they enforce the function
progression.
The statistical accuracy of the Monte Carlo result is
determined by the number of counted ions per cell.
More and more empty cells at increasing penetration
depth downgrade the statistics dramatically. The cal-
culation of the Bernstein approximation needs a rea-
sonable information in all sample points. In order to
fulfill this requirement, the concentration value at a
sample point in an empty cell is calculated by aver-
aging over the values of surrounding cells.
It is not necessary to calculate the Bernstein polyno-
mial explicitly, since each polynomial is only eval-
uated in the middle point ( 1

2 , 1
2 , 1

2 ) of the domain
[0, 1]3. In this case, the approximating polynomial
of order (n3 − 1) can be simplified to the formula ac-
cording to (1), which enables a fast calculation of the
approximated value.
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For the original smoothing algorithm the approxima-
tion of the concentration values for the grid points of

f,5,5B

Bf,5,5

d

Figure 2: This sketch demonstrates the calculations
performed for one point of the new unstructured grid
in a two-dimensional example. It can be applied to
the third dimension in an analogous manner. The
thin orthogonal lines confine the cells of the internal
grid. The four dashed lines denote the unstructured
grid, where the new point is marked by a small circle.
In the first step the 52 sample points are used to
calculate the concentration value Bf,5,5 at the middle
of the central grey cell. Then the scalar product of
the gradient and the distance vector d is calculated
to produce a delta concentration value.

the unstructured grid was evaluated only in the mid-
dle point of that cell which contains the grid point.
The drawback is that two grid points contained in
the same cell get an equal concentration value. This
approximation can be improved if the distance of the
new point from the middle point is also taken into
consideration as it is depicted in Figure 2. Accord-
ing to (2) the concentration difference ∆ Bf,n,n,n be-
tween the new point and the middle point can be
approximated by the scalar product of the concen-
tration gradient and the distance vector. (3) points
out that it is possible to calculate the required three
partial derivatives also in a fast way.

∆Bf,n,n,n = ∇Bf,n,n,n · d (2)
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Figure 3: Accurate Monte Carlo Simulation Result of Phosphorus Implantation in Silicon with N = 4·106
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Figure 4: Fluctuation of the Raw Monte Carlo Result

PSfrag replacements

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

S
ta

n
d
a
rd

d
e
v
ia

ti
o
n

σ
(%

)

Depth z (nm)

Figure 5: Raw Result
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Figure 6: Fluctuation of the Smoothed Simulation Result
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Figure 7: Smoothed Result

For the analysis of the implemented smoothing algo-
rithm, numerical experiments were performed with
the simulator MCIMPL-II on a three-dimensional struc-
ture equivalent to one-dimensional problems. We as-
sume that all simulated ions are statistically inde-

pendent. Figure 3 shows the three-dimensional re-
sult for the implantation of phosphorus ions into a
crystalline silicon substrate with N = 4 · 106 simu-
lated ions. We extracted z coordinates and phospho-
rus concentration values C (vertical direction) from



all 120 × 112 × 20 cells of the simulation area. This
leads to Figure 4 which shows a significant statistical
fluctuation of the ion concentration at equal pene-
tration depth z for N = 4 · 106 ions. The relative
standard deviation σ of the impurity concentration
in a plane z = const is a measure for the simulation
error of three-dimensional results compared to one-
dimensional results (Figure 5). The mean impurity
concentration C(n) of n ortho-grid points at equal
location z forms the one-dimensional doping profile.
The standard deviation S(n) of a sample defined by
the concentration values of n grid points in a plane
z = const is given by

S(n) =

√

∑n

i=1[Ci − C(n)]2

n − 1
(4)

σ =
S(n)

C(n)
(5)

The relative standard deviation σ according to (5) is
calculated in order to evaluate the three-dimensional
raw Monte Carlo result before smoothing. Addition-
ally, we extracted all z coordinates and smoothed
phosphorus concentration values from the unstruc-
tured grid. This leads to Figure 6 which shows a
clearly reduced fluctuation of the phosphorus con-
centration compared to Figure 4. Most of the ions
come close to the mean projected range Rp to rest,
causing a smaller variance there. Figure 7 shows the
corresponding relative standard deviation σ of the fi-
nal simulation result.
As measure of the improvement, the ratio of the max-
imum of the standard deviation σmax within the range
2 · ∆Rp (twice the straggling at the mean projected
range) of the doping profile, after and before smooth-
ing, can be used. In our case σmax,after/σmax,before =
0.25 for 2 · ∆Rp = 22 nm at Rp = 30 nm.

σmax = const ·
1

√
N

(6)

The theoretical simulation error σmax according to
(6) follows from the Central Limit Theorem (Law and
Kelton 2000). It has been expectedly verified by sim-
ulation experiments with different N (Wittmann et
al. 2003). In order to reduce σmax by 1/4 only by
increasing N , one has to increase N by a factor of
16. But as demonstrated in Figure 4–7 also a sig-
nificant improvement of the statistical accuracy can
be achieved by sophisticated postprocessing, in par-
ticular through the filtering effect of the Bernstein
polynomials, which eliminates high-frequency fluctu-
ations from the original data.

The linear approximation of the delta concentration
value between the grid point of the unstructured grid
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Figure 8: Effect of the Linear Approximation

Figure 9: Monte Carlo Implantation Application

and the associated cell middle point significantly re-
duces the effect of the cell discretization. A rough cell
dimension (5 nm) is used for the Monte Carlo simula-
tion to count the number of implanted ions in a com-
putationally efficient way. The left part of Figure 8
shows the doping profile produced by a Bernstein ap-
proximation without performing an additional linear
approximation in the smoothing procedure. The in-
ternal cell dimension of 5 nm produces equal con-
centration values for the first two samples. The right
part of this picture shows the doping profile obtained
after advanced smoothing. As demonstrated in this
comparison, the advanced smoothing algorithm leads
to a smoother and therefore to a more realistic dop-
ing profile. For the year 2003 the International Tech-
nology Roadmap for Semiconductors (Semiconductor
Industry Association 2001) predicted the necessity of
a simulation accuracy of 5% (5 nm) for vertical and
lateral junction depths. Longer computing times or
worse statistics would arise if the cell dimension of
the simulator would be further reduced under 5 nm



in order to enhance the accuracy. In contrast to that
the used smoothing algorithm can help to improve
the accuracy of Monte Carlo results in a computa-
tionally efficient way.

Figure 9 shows the result of an implantation per-
formed with the simulator MCIMPL-II. In this appli-
cation a real-world device stucture for processing a
MOS transistor was used as input of the simulation.
Arsenic ions with an energy of 70 keV and a dose
of 3 · 1015 cm−2 were implanted. In this example
only 2000000 initial ions were used to demonstrate
the fluctuation of the doping profile. It is recom-
mended to use at least 2000000 ions/µm2, otherwise
the simulation result is inacceptably inaccurate due
to the statistical fluctuation.

CONCLUSION

Three-dimensional Monte Carlo simulation results of
ion implantation tend to inherent high variances in
particular in regions with a bad statistical represen-
tation of dopants. The goal of this work is to achieve
a more accurate prediction of doping profiles with
the aid of advanced smoothing of Monte Carlo simu-
lation results in a computationally efficient way. The
extended algorithm has an impact on the accuracy of
the predicted doping profile in various ways. High-
frequency fluctuations from the original data are elim-
inated through the filter effect of the Bernstein poly-
nomials in the first approximation step of the final
result. Next, a linear approximation step is per-
formed to reduce effects which arise through the cell
discretization of the simulator. The analysis of the
results produced by the advanced algorithm demon-
strates the gained improvement of the doping profile
which can immediately be used in a subsequent pro-
cess simulation step.
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