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ABSTRACT

An essential task for any finite element method is to
provide appropriate resolution of the mesh to resolve
the initial solution. We present a computational method
for anisotropic tetrahedral mesh refinement according to
an adjustable discretization error. The initial attribute
profile is given by an analytical function which is twice
continously differentiable. Anisotropy is taken into ac-
count to reduce the amount of elements compared to pure
isotropic meshes. By the proposed method the spatial
resolution in three-dimensional unstructured tetrahedral
meshes used for diffusion simulation is locally increased
and the accuracy of the discretization improved.

INTRODUCTION

The generation of locally adapted tetrahedral meshes
which carry the initial attribute profile is an important
task of many modern algorithms in the finite element
solution of partial differential equations, particularly for
diffusion problems. The goal is to create and adapt a
mesh which matches the initial attribute profile appropri-
ately. This can only be done efficiently by anisotropic
meshes.

Strict isotropic three dimensional regular meshes are
not practicable for most realistic simulation structures
especially in the field of semiconductor process sim-
ulation, which is our major application, because the
resulting amount of tetrahedral elements required for a
discretization with isotropic meshes is not practicable.
The demand of calculation time and the limitation of
memory require anisotropic adapted meshes which are
more manageable.
The generation of tetrahedral meshes has to be enhanced
by adaptation techniques where anisotropy plays a
central position. The question then is how to identify
these regions and how to obtain a good balance between
the refined and unrefined regions such that the overall
accuracy is optimal using a (nearly) minimal number of

grid points. These considerations clearly show the need
for error estimators which can be extracted a posteriori
from the computed numerical solution and the given
data of the problem. A combination of error estimation
and refinement mechanism is necessary to deliver higher
accuracy, if needed, by increasing the spatial resolution.

ANISOTROPIC REFINEMENT

One of the main methods for improving the spatial resolu-
tion is tetrahedral bisection which is well investigated by,
e.g. (Arnold et al. 2000). When bisecting a tetrahedron,
a particular edge – called the refinement edge – is selected
and split into two edges by a new vertex, cf. Fig. 1.

Figure 1: Bisecting.

As new tetrahedra are
constructed by refinement,
their refinement edges
must be selected carefully
to take anisotropy into
account without produc-
ing degenerately shaped
elements. Bisecting a
particular edge always
influences the whole batch.
To avoid ill shaped ele-
ments, the longest edge of
the refinement tetrahedron
is used as refinement edge.
It is obvious that the longest edge of one tetrahedron
is not necessarily the longest edge of all attached tetra-
hedra. To bear down this problem, all new tetrahedra
are directly tested and included into the refinement
procedure.
A recursive approach for local mesh refinement which
was suggested, e.g. in (Kossaczky 1994), cannot be
applied to our situation due to the fact that anisotropy
has to be taken into account.
To embrace anisotropy the basic idea of our refinement
strategy is to calculate the length of an edge in a certain
metric space (Lo 2001), i.e., the strain of the space varies
from point to point with the consequence that the length
of an edge depends on its position in the space. In case
the anisotropic edge length is larger than an adjustable
value, the edge is cut in the middle.



A set S with a global distance function (the metric g)
which for every two points x, y in S gives the distance be-
tween them as a nonnegative real number g(x, y) is called
a metric space. A metric space must also satisfy

g(x, y) = 0 ⇔ x = y

g(x, y) = g(y, x)

g(x, y) + g(y, z) ≥ g(x, z).

(1)

Calculating the length of an edge in a metric space can
be seen as calculating a line integral. In general an
arc length `C is defined as the length along a curve C:
`C =

∫

C
ds. We define a symmetric and positive definite

tensor M = M(x, y, z) over the entire domain, repre-
senting a Riemannian metric (Lo 2001). Roughly speak-
ing, the metric tensor mij determines how to compute
the distance between any two points in a given space.
Its components can be viewed as multiplication factors
which must be placed in front of the differential dis-
placements dxi in a generalized Pythagorean theorem
ds2 = g11dx2

1 + g12dx1dx2 + g22dx2
2 + . . . .

A metric tensor at a point of the three-dimensional do-
main Ω can be represented by a 3 × 3 matrix M. The
length of a line segment PQ in a metric space is calcu-
lated by (Borouchaki et al. 1997)

`PQ =

∫ 1

0

√

PQ
T · M(P + t · PQ) · PQ dt (2)

where M(P + t · PQ) is the metric at point P + t · PQ,
t ∈ [0, 1].

In (Yamakawa and Shimada 2000) anisotropy is defined
by three orthogonal principal directions and an aspect ra-
tio in each direction. The three principal directions are
represented by three unit vectors ~ξ, ~η, and ~ζ, and in these
directions the amounts of stretching of a mesh element
are represented by three scalar values λξ, λη, λζ , respec-
tively. Using (~ξ, ~η, ~ζ) and (λξ, λη, λζ) we define two ma-
trices R and S by

R :=





ξx ηx ζx

ξy ηy ζy

ξz ηz ζz



 and S :=





λξ 0 0
0 λη 0
0 0 λζ



 . (3)

By combining matrices R and S, we obtain a 3× 3 posi-
tive definite matrix M

M := RSR
T (4)

that describes the three-dimensional anisotropy.

The crux of the matter is to find a suitable anisotropic
tensor function which describes the stretching factors for
a specific diffusion problem. Another problem is to find
an error estimation which detects those regions where a
higher spatial resolution is needed. An answer to these
questions can be found when looking at the characteris-
tics of the diffusion problem.

DIFFUSION

Diffusion can be viewed as the transport of matter caused
by a gradient of the chemical potential. This mecha-
nism is responsible for the redistribution of dopant atoms
in a semiconductor during a high-temperature process-
ing step. The underlying ideas can be categorized into
two major approaches, namely, the continuum theory of
FICK’s diffusion equation and the atomistic theory (Nishi
and Doering 2000). We are using the continuum theory
approach which describes the diffusion phenomenon by

~J = −D · grad(C). (5)

~J denotes the diffusion flux, D is the diffusion coeffi-
cient or diffusivity, and C is the concentration of the
dopant atoms. In general, the diffusion models used in
semiconductor process simulation are strongly nonlinear,
because the diffusion coefficients depend, e.g., on the
impurity concentration and the point defects distribu-
tion (Kosik et al. 2000). These dependences result
in coupled equation systems for impurities and point
defects. Additionally, chemical reactions and convection
problems have to be considered in the models. However,
for better understanding of our refinement method we
use the linear parabolic diffusion problem which is given
by (5) for the following analysis.
There are mainly two discretization schemes for PDEs in
complex domains namely the finite element method and
the finite volume (finite box) method. In our diffusion
simulator we use the Galerkin approach of the finite
element method with linear shape functions and with
backward Euler time discretization (Putti and Cordes
1998).

GRADIENT FIELD

The gradient ∇C = grad(C) of a scalar field C =
C(x, y, z) in Cartesian coordinates is given by

∇C =
∂C(x, y, z)

∂x
~i +

∂C(x, y, z)

∂y
~j +

∂C(x, y, z)

∂z
~k.

(6)
We are looking for (6) expressed through local coordi-
nates on the three-dimensional unit simplex T . The gradi-
ent of a tetrahedral discretization can be calculated by us-
ing linear basis functions (Zienkiewicz and Taylor 1989)
applied to the three-dimensional unit. The coordinate
transformation

x = x1+(x2 − x1)ζ + (x3 − x1)η+(x4 − x1)ζ

y = y1 +(y2 − y1)ζ + (y3 − y1)η +(y4 − y1)ζ (7)

z = z1 +(z2 − z1)ζ + (z3 − z1)η +(z4 − z1)ζ

allows to map an arbitrary tetrahedron at global coordi-
nates (x, y, z) to the unit simplex T (cf. Fig. 2) with local
element coordinates (ξ, η, ζ). In matrix notation this can
be written as

~r − ~r1 = J · ~δ, (8)



P
1

P
3

P
4

P
2

ξ

ζ

η

1

1

1

0

x

z

y

Figure 2: Coordinates transformation.

where ~r = (x, y, z)T , ~r1 = (x1, y1, z1), ~δ = (ξ, η, ζ)T ,
and J denotes the JACOBIAN matrix

J =













∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ













(9)

which applied to (7) results in

J =





x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1



 . (10)

Using linear basis functions on the three-dimensional
unit simplex (Bauer 1994), which are given by

N1 = 1 − ξ − η − ζ, N2 = ξ,

N3 = η, N4 = ζ,
(11)

allows a linear approximation of the scalar field over the
element in the form

CT (ξ, η, ζ) =

4
∑

k=1

Nk(ξ, η, ζ)Ck, (12)

where Ck denotes the scalar value of the solution on ver-
tex k of the three-dimensional unit simplex T .
Applying (6) to the linear approximation, given by (12),
results in

∇CT (ξ, η, ζ) =





−C1 + C2

−C1 + C3

−C1 + C4



 (13)

for the gradient of the spatial discretization element. Us-
ing the inverse of the transposed JACOBIAN matrix the
gradient in global coordinates can now be expressed by :

∇CT (x, y, z) = (JT )−1 · ∇CT (ξ, η, ζ). (14)

It is in the nature of this approach that the gradient
∇CT (x, y, z) (14) is constant over an element T and
forms a piecewise constant gradient field which gives a
granular approximation of the proper gradient field given
by (6).
Since the vector field (14) is piecewise constant, it is
obvious that strong variations of the gradient from one
element to an adjacent one yield an approximation error
when compared to the proper continuous gradient field.
This gradient approximation error causes a diffusion

flux error which gives rise to a violation of the law of
mass conservation. The approximation gets worst if
the changes of the gradient field are to high, i.e. the
derivatives of the gradient field should be slight, or from
an other point of view, refinement should take place at
spatial regions with high second derivatives of the initial
scalar field.

HESSIAN MATRIX

The basic idea of our refinement strategy is to use the

HESSIAN matrix of the given (initial) solution for the
anisotropy metric. The HESSIAN H is given by

H =









∂2f(x,y,z)
∂x2

∂2f(x,y,z)
∂x∂y

∂2f(x,y,z)
∂x∂z

∂2f(x,y,z)
∂y∂x

∂2f(x,y,z)
∂y2

∂2f(x,y,z)
∂y∂z

∂2f(x,y,z)
∂z∂x

∂2f(x,y,z)
∂z∂y

∂2f(x,y,z)
∂z2









. (15)

In general the entries of the HESSIAN matrix are possibly
negative. To use the HESSIAN as metric for the refine-
ment strategy, a transformation has to be performed.
This transformation is done simply with the norm of
all function derivatives. The corresponding metric can
be written as k · mij = |hij| (i, j = 1, 2, 3). To
scale the metric a scalar factor k is used. This factor
describes the maximum of the edge length in a static
non-biased metric space where M = I, the identity
matrix. The advantage of using the HESSIAN matrix is
that it excellently reflects the curvature of the dopant
profile and guarantees a good approximation in regions
with high second derivatives (Gray 1998).

In our investigation of the method the HESSIAN must
be given analytically which requires a twice continously
differentiable initial attribute profile. It can be shown
that a large class of realistic profiles can be produced by
linear combinations of twice differentiable functions.

ERROR ESTIMATION

In order to measure the quality of a given three-
dimensional discretization an error approximation is
needed. According to the discussion of an interpolation
error caused by using linear weighting functions (John-
son 1987), we calculate the linear approximation error

ET =

∣

∣

∣

∣

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

u(ξ, η, ζ) dξ dη dζ

−
∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

uh(ξ, η, ζ) dξ dη dζ

∣

∣

∣

∣

(16)

on a three-dimensional simplex T , where u(ξ, η, ζ)
denotes the given analytical profile and uh(ξ, η, ζ) the
linear approximation over the three dimensional unit
simplex T . For the diffusion problem the approximation
error calculated by (16) can be seen as the diffusion
particle difference over a tetrahedron. The difference is



caused by using piecewise linear functions to approxi-
mate the proper attribute profile. This approach is a usual
one and suitable for sufficiently flat functions. For more
strongly curved profiles the error of the approximation
increases and a higher spatial resolution is needed.

EXAMPLE

Diffusion, in the sense of an IC processing step, refers
to the controlled forced migration of dopants into the
substrate or adjacent material. The resulting doping
profile which plays a major role in the performance of
the integrated circuit, is affected by temperature and
time as well as the temperature-time relationship during
processing. Dopant atoms can be introduced into silicon
in many ways. The most commonly used methods are (1)
ion implantation and subsequent annealing or drive-in
diffusion, (2) diffusion from a chemical source in vapor
form at high temperatures, and (3) diffusion from a
doped-oxide source (SMS1988). Since ion-implantation
provides very precise control of the implanted profile, it
is used to replace the chemical and doped-oxide sources
wherever possible and is extensively applied in VLSI
device fabrication.

The most common class of functions for the approxima-
tion of ion-implantation or drive-in diffusion profiles are
GAUSSIAN probability distributions which are given by

P (x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (17)

for a variate X with mean µ and variance σ2 (Kenney
and Keeping 1951). P (x) dx gives the probability that a
variate with a GAUSSIAN distribution takes on a value in
the range [x, x + dx].
The HESSIAN matrix (15) can then be built easily from
the dopant profile approximation given by (17) and used
for the anisotropy metric (4).

Such profiles can occur, e.g., after a diffusion with a con-
stant dopant atoms dose. For a one-dimensional case this
can be written as

Nd =

∫

∞

0

C(x, t)dx = const. (18)

This diffusion condition is referred to as drive-in diffu-
sion (Shewmon 1989).

To see the essential impact of our refinement strategy we
use a three-dimensional test structure. The underlying
initial mesh (see Fig. 4(a)) is a coarse isotropic mesh
which carries a normalized GAUSSIAN profile (see
Fig. 3) which could occur, e.g., after diffusion with a
constant dopant atoms dose.

Note that after a drive in diffusion process step the
gradient of the concentration C vanishes at the sur-
face (left end of the test structure, see Fig. 4(a)),
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Norm of 2nd Derivative (scaled)
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Figure 3: Test profile and norm of the second derivation
(scaled to one) along the x direction of the
mesh structure.

∇C = grad(C) = 0, and so does the diffusion flux
~J (5). Therfore the initial dopant concentration has its
maximum at the left of the structure.

In this case the profile is one-dimensional and has

therefore only one non-zero HESSIAN entry ∂2f(x,y,z)
∂x2 ,

cf. (15). The corresponding scaled shape of the curve can
be seen in Fig. 3. Using the HESSIAN matrix as input
for the refinement procedure it is guaranteed that the
refinement takes place where the initial solution shows a
strong curvature and leaves regions with low curvature
untouched.

Fig. 4(a) shows the initial coarse mesh. The tetrahedral
structure is strict isotropic and mostly regular. The color
of the structure corresponds to the one-dimensional
initial solution which is shown in Fig. 3.

After the anisotropic refinement which is based on the
HESSIAN matrix of the attribute-profile function, the
refinement takes place only in regions of high curvature
as shown in Fig. 4(b). The anisotropy is restricted to the
x-direction of the test structure while others directions
are not influenced.

Fig. 5 shows the mesh valuation according to the linear
approximation error, cf. (16). We used a one-dimensional
cut along the x direction through the test-structure and
the error evaluation was performed along this one-
dimensional cut.

At the initial mesh the error varied according to the
curvature of the profile. In the regions where the profile
shows a flat behavior the error is very small and therefore
in this areas no refinement is needed. The shape of the
error curve reflects the shape of the norm of the second
derivative of the initial profile (see Fig. 3).



(a) Isotropic coarse mesh (initial mesh). (b) Anisotropic fine mesh (after refinement).

Figure 4: Mesh test structure before and after anisotropic refinement.
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Figure 5: Approximation error ET : one-dimensional cut
through initial mesh and refined anisotropic
mesh test structure.

After the refinement a rigorous reduction of the error
is obtained. The variation along the x-direction has
vanished and a good initial solution approximation over
the whole domain was reached.

CONCLUSION

We present a computational method for locally conformal
anisotropic tetrahedral mesh refinement according to an
adjustable discretization error. The goal of our procedure
is to create a mesh which matches an analytically given
initial attribute profile appropriately. This is essential for

accurate three-dimensional diffusion process simulation
which is a key process of semiconductor device manu-
facturing.

The basic refinement step is tetrahedral bisection which
guarantees a conformal mesh during refinement and
allows easily local mesh adaption. A special mathemat-
ical torsion of a metric space is used to take anisotropic
structures into account. This enables the reduction of
elements compared to strict isotropic refinement.

It is obvious that in regions with high curvature of the
initial profile the approximation error also shows high
values. The refinement procedure detects those regions
and uses the HESSIAN matrix of the profile for the metric
space torsion. This guarantees a target oriented local
mesh refinement and keeps the amount of additional
mesh points small.

In our refinement procedure the initial attribute profile
has to be given by an analytically function which is twice
continously differentiable. At the first glance this is a
loss of generality but a wide range of realistic diffusion
and ion implantation profiles can be approximated with
GAUSSIAN distribution functions. These function classes
are continously twice differentiable and therefore perfect
to form the HESSIAN matrix.

Our algorithm shows good local behavior and reflects
the curvature of the initial profile excellently. The er-
ror estimations shows that the accuracy can be improved
drastically by target oriented refinement. To find a good
balance between refined and unrefined regions such that
the overall accuracy is optimal using a (nearly) minimal
number of grid points, the error estimation must be more
problem oriented and reflect the nature of finite elements.
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