
VERIFICATION OF REAL TIME UML SPECIFICATIONS THROUGH A
SPECIALIZED INFERENCE MECHANISM BASED ON A TOKEN PLAYER

ALGORITHM AND THE SEQUENT CALCULUS OF LINEAR LOGIC

Stéphane Julia, Michel dos Santos Soares
Faculdade de Computação

Universidade Federal de Uberlândia,
P.O. Box 593, 38400-902, Uberlândia-M.G-Brazil,

email: stephjl@aol.com, michelssoares@yahoo.com.br

KEY WORDS—UML, Petri Net, Linear Logic, Schedul-

ing, Real Time System, Batch System

Abstract

The objective of this article is to present an
approach based on UML dynamic diagrams, on time
Petri Nets and Linear Logic for scenario verification
of Real Time Systems. The main idea consists of
translating the sequence diagrams which express the
initial specifications of the system to a unique p-
time Petri Net model which represents the global be-
haviour of the entire system. For the Petri Net frag-
ments involved in conflict situations, symbolic pro-
duction and consumption dates assigned to tokens
are calculated using a non-conventional (max;+) al-
gebra based on the sequent calculus of Linear Logic.
These dates are then used to solve conflict situations
within a token player algorithm used for scenario ver-
ification of Real Time specifications and which can
be seen as a simulation tool for UML interaction di-
agrams. The approach is illustrated through an ex-
ample of Real Time System used at the global coor-
dination level of a Batch System.

I. INTRODUCTION

The Object Oriented methods seem to be very
suitable for proposing approaches to represent Real
Time Systems, as real objects of the physical system
are naturally transformed into software objects that
can be easily implemented and verified. Of all Object
Oriented notations, UML [OMG 1999] is one of the
best accepted in the software industry. In particular,
with the dynamic diagrams proposed by UML, it is
possible to represent the communication mechanisms
among several objects for a specific scenario. There-
fore, UML notations have their limitations when they
are used for specifying Real Time Systems. For ex-
ample, it is not possible with a unique UML diagram
to represent the set of all dynamic interactions that
exist at a global system level. As a consequence, it
becomes very difficult to guarantee that the execu-
tion of several sequence diagrams in parallel will not
lead to time constraint violations.

Petri Nets [Murata 1989] are very well adapted
to model Real Time Systems, as they allow for a
good representation of conflict situations, shared re-
sources, synchronous and asynchronous communica-

tion, precedence constraints and explicit time con-
straints in the time Petri Net case.

As was presented in [Cardoso 2001], translat-
ing sequence diagrams of UML in Petri Net models
allows one to define an operational semantic for the
sequence diagrams in order to know how these dia-
grams are executed in real time.

The dynamic behaviour of a system imposes
a scheduling of control flow. The scheduling problem
consists of organizing in time, the sequence of the op-
erations considering time constraints (time intervals)
and constraints of shared resources utilization neces-
sary for operation execution. From the traditional
point of view of Software Engineering, the schedul-
ing problem is similar to the activity of scenario exe-
cution. A scenario execution becomes a kind of sim-
ulation which shows the system’s behaviour in real
time. In the real time system case, several scenarios
can be executed simultaneously and conflict situa-
tions which have to be solved in real time (without
a backtrack mechanism) can occur if a same non-
preemptive resource is called at the same time for
the execution of operations which belong to different
scenarios.

In [Julia 2002], a simulation technic based on
a token player algorithm was presented whose pur-
pose was to verify real time UML specifications. The
basic principle was to generate a class graph [Khansa
1996] each time a conflict situation for a shared re-
source was met in order to guarantee that a time
constraint violation would not be reached. The class
graph allows one to represent all possible evolutions
of p-time Petri net fragments involved in conflict sit-
uations but has the disadvantage of the combinatory
explosion. Another problem is that for each new sce-
nario execution, new class graphs which are based
on real numerical dates and durations must be cal-
culated.

In this paper, an approach, based on the se-
quent calculus of Linear Logic [Girard 1987], will be
proposed to solve conflict situations in order to accel-
erate conflict resolutions during the scenario execu-
tion. This will be realized calculating symbolic dates
for the tokens in conflict by using a non conventional
(max;+) algebra [Rivière 2001].

Supply
Tank 1

Tank 2
Supply

R 1

R 2

R 3

Tank 1

 Storage
 Tank 2

 Storage

TE1

TE2

TE3 TE4

Fig. 1. Batch Production System

II. REAL TIME SYSTEMS MODELLING
BASED ON UML DIAGRAMS AND
ON P-TIME PETRI NET

A Real Time System used at the global coor-
dination level of the Batch System given in figure 1
will be considered to illustrate the specification ac-
tivity of Real Time Systems using UML diagrams. A
batch is a quantity of material which is transformed
passing through different equipment and respecting
a specific recipe which defines the sequence of oper-
ations. The production system of figure 1 executes
two different recipes. Initially, two batches (1 and
2) are stored in their respective supply tanks (1 and
2). Recipe 1 consists on transferring batch 1 from
supply tank 1 to reactor R1 to a processing stage
utilizing thermal exchange TE1. After batch 1 is
processed in R1, it is transferred to reactor R3 to
another stage in processing, passing through TE3.
When finalized, batch 1 is deposited in storage tank
1, passing through TE4 for the final product liber-
ation. Recipe 2 behaves in a similar manner and
consists of transferring batch 2 from supply tank 2
to storage tank 2, passing through reactors R2 and
R3 and using thermal exchanges TE2, TE3 and TE4.
The advantage of considering such a system is that
some of the main features which generally appear in
Real Time Systems will be considered. The execu-
tion of different recipes can be seen as a typical ex-
ample of parallelism, and the utilization of common
equipment (for example, reactor R3 will be used by
both recipes) is an example of resource sharing.

Batch 1

TE1

R1

Recipe 1

TE4

R3

TE3

Recipe 2

Batch 2

TE2

R2

Fig. 2. Use Case Diagram

The proposed approach uses a Use Case dia-
gram to show the main functions of the Real Time
System from a user’s point of view and the rela-

tionship between the system and the environment.
Analysing Real Time Systems from an Object Ori-
ented approach, the actors of the Use Case diagram
are generally good candidates for objects. From the
Use Case diagram of figure 2, it is possible to note
that the execution of recipe 1 needs the physical
equipment: TE1, TE3, TE4, R1 and R3. In the same
manner, the execution of recipe 2 needs the physical
equipment: TE2, TE3, TE4, R2 and R3. As actors
are good candidates for objects, it is easy to conclude
that there exists a recipe class which has a method
that corresponds to the treatment of the correspond-
ing batch, a reactor class which has a method that
corresponds to the processing of a batch into a phys-
ical reactor, and a thermal exchange class which has
a method called for transport operations. As a mat-
ter of fact, each actor of the Use Case diagram will
have to communicate with its corresponding software
object.

 Process in R1()

 Transfer to R1()

 Release R1()

 Release R3()

Transfer to Storage Tank 1()

Process in R3()

Transfer to R3()

Recipe 1 TE1 R1 TE3 R3 TE4
Batch 1

Process batch 1()

Fig. 3. Sequence Diagram for Recipe 1

After defining the main objects of the system,
each function corresponding to a Use Case is given
through a specific sequence of operations modelled
by a sequence diagram that shows the communica-
tion mechanisms among the involved objects. This
type of diagram explicitly shows the chronological
order of operations. The scenario execution of recipe
1 and the interactions between the involved objects
are shown in the sequence diagram of figure 3. Look-
ing at this diagram, it is quite clear that initially, the
actor Batch 1 calls the method of the software object
which will execute recipe 1. After that, the object
Recipe 1 calls the method of R1 for the processing
operation. Then, object R1 calls the method of TE1
to transfer batch 1 from supply tank 1 to reactor R1
and, at the end of the first processing stage, a mes-
sage is sent to the object Recipe 1 which can call
the method of the object R3 to the second process-

ing stage. The object R3 calls the method of the
object TE3 to transfer batch 1 from reactor R1 to
reactor R3. Once batch 1 is transfered to R3, an
asynchronous message is sent to R1 so that it be-
comes available and a synchronous response is sent
to object R3 so that the processing in reactor R3 be-
gins. At the end of the processing in reactor R3, the
thermal exchange TE4 is requested to transfer batch
1 to storage tank 1 for product liberation. At the end
of the transfer operation, an asynchronous message
is sent to R3 so that it becomes available for other
operations. The sequence diagram of recipe 2 is sim-
ilar to the one of recipe 1. To build it, it is necessary
to change the actor Batch 1 and the objects Recipe
1, TE1 and R1 from the sequence diagram shown in
figure 3, by the actor Batch 2 and the objects Recipe
2, TE2 and R2, respectively.

One way of analysing specifications given throu-
gh semi-formal UML notation is to formally define
an operational semantic for the UML dynamic dia-
grams based on a formal notation which shows how
these diagrams are executed in real time and which
allows one to analyse qualitativaly and quantitati-
valy real time UML specifications. In particular, by
analysing sequence diagrams separately, it is not pos-
sible to verify if a conflict situation can occur. For
example, during real time execution, both sequence
diagrams may have to request some common objects
at the same time interval. Another limitation of the
sequence diagrams in the real time system case is
that explicit time constraints, like the initial date of
a scenario execution, do not appear formally on these
diagrams.

Petri Nets allows one to describe internal be-
haviour of objects as well as synchronous and asyn-
chronous communications between objects (synchro-
nous and asynchronous communications are repre-
sented by communication places (semaphore type)).
Based on the interactions between objects specified
in a sequence diagram, it is possible to obtain a Petri
Net model which shows the interactions between the
Petri Net objects (for each object, there is a cor-
responding Petri Net template which shows the in-
ternal behaviour of the object) involved in the ex-
ecution of the scenario. Applying some of the re-
duction rules [Murata 1989] of the Petri Net theory
which allow one to eliminate some of the communi-
cation places and of the waiting places, a reduced
Petri Net model can be obtained where each object
of the sequence diagram is represented by a non-
preemptive resource. Some of these resources may
be used by different scenarios (objects which belong
to several sequence diagrams). As a consequence,
the merging of these shared places produces a unique
global Petri Net model which represents the global
behaviour of the entire system. As was shown in
[Julia 2000], explicit time constraints which exist in
a Real Time System, can be formally defined using

a p-time Petri Net model. The static definition of
a p-time Petri Net is based on static intervals which
represent the permanency duration (sojourn time) of
tokens in places and the dynamic evolution of a p-
time Petri Net model depends on the time situation
of the tokens (date interval associated with the to-
kens). Figure 4 shows the p-time Petri Net model

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��P2

P3

P4

P5

P6

P7

t2

t3

t4

t5

t6

P9

P10

P11

P12

P13

P14

t7

t9

t10

t11

t12

t8
R1

TE2

TE3

TE4

R3

R2

Process in R1

Transfer to R1

Transfer to R3

Process in R3

Transfer to Tank 1

Storage Tank 1

Transfer to R2

Process in R2

Transfer to R3

Process in R3

Transfer to Tank 2

Storage Tank 2

TE1

[0,]

[0,]

[0,]

[0,]

[0,]

[0,]

8
8

8

8

8

8

[21,41]

[0,]

[12,31]

[3,3]

[2,2]

[20,24]

[4,4]

[0,20]

[6,6]

[6,10]

[3,3]

[6,10]

[2,2]

[0,12]

8
Supply Tank 1

P1

t1

Batch 1

Supply Tank 2

[30,33]P8

Batch 2

Recipe 1 Recipe 2

D1 D8

Fig. 4. p-time Petri net model for Recipe 1 and Recipe 2

which corresponds to the whole system (recipe 1 +
recipe 2). Each recipe is represented by a production
route (a sequence of transitions and places) and each
object of the sequence diagrams is represented by a
resource (a shared resource if the object appears in
both recipes, like R3 for example). For example, as
specified on the sequence diagram in figure 3, after
the processing of batch 1 in R1, the resource R1 be-
comes available only when batch 1 is transfered from
reactor R1 to reactor R3.

The static intervals associated to each place
of the model in figure 4 and the execution beginning
of each recipe, specified by the firing date of the first
transition of each recipe (D1 for recipe 1 and D8 for
recipe 2), will depend on specific production plans.

III. CONFLICT SITUATION ANALYSIS
IN A P-TIME PETRI NET

In p-time Petri Nets, as shown in [Julia 2000],
conflict situations for shared resources are visible dur-
ing a time interval (there exists the notion of Conflict
Time Interval), and not at a single time point. For
example, considering the p-time Petri Net of figure
5 (the Petri net fragment involved in the conflict for
the shared resource R3), if a token appears in P3
at date D3=23 and a token appears in P10 at date
D10=36, then, the visibility intervals of these tokens
are [(δp3)min; (δp3)max] = [12+23; 31+23] = [35; 54]
for the token in P3 and [(δp10)min; (δp10)max] = [6 +
36; 10 + 36] = [42; 46] for the token in P10. The

conflict time interval associated to the pair (t3; t9) is
given by the intersection of these visibility intervals:
[35; 54] ∩ [42; 46] = [42; 46]. So, an effective conflict
between t3 and t9 is able to occur during the interval
[42 ; 46].

Using a class graph algorithm, it is possible
to verify if a special class, called “death token class”,
which represents a time constraint violation (the re-
source necessary in order to respect a time interval
associated to a place of a p-time Petri Net is not
available at the right time), can be reached when
considering a Petri Net fragment involved in a spe-
cific conflict state. But the class graph has some
limitations; the state space can be very large and
the duration a token can remain in the same place
has to be delimited by real numerical values and not
symbolic ones. In particular, each time a new sim-
ulation is executed, new conflict time intervals are
calculated and, for each conflict situation, a class
graph has to be generated. As a consequence, the
global simulation speed is reduced.

�
�
�
�

�
�
�
�

�
�
�
�

P4

P5

P6

P10

P12

P13

t3

t4

t5

t6 t12

P11

t9

t10

t11

R3

Process in R1

Transfer to R3

Process in R3

Transfer to Tank 1

Transfer to R3

Process in R3

Transfer to Tank 2

[0,]

8

[3,3]

[20,24]

[4,4]

[3,3]

[6,10]

[2,2]

[12,31]
[6,10]
Process in R2

D10D3

P3

Fig. 5. Useful part of the conflict for R3

�
�
�
�

�
�
�
�

�
�
�
�

P4

P5

P6

P12

P13

t3

t4

t5

t6 t12

P11

t9

t10

t11

Transfer to R3

Process in R3

Transfer to Tank 1

Transfer to R3

Process in R3

Transfer to Tank 2

[3,3]

[20,24]

[4,4]

[3,3]

[6,10]

[2,2]

[0,]

[0,]8

8

R3

R3

(1)

(2)

P10[12,31]
Process in R1 [6,10]

Process in R2

D10D3

P3

Fig. 6. Conflict Resolution for R3

A conflict situation for a shared resource in a
p-time Petri Net is equivalent to a certain extent to
a Watch Dog [Rivière 2001] (two transitions in struc-
tural conflict) represented by a t-time Petri Net (time

��

�
�
�
�

P3 P4 P5 P6 P11 P12t4t3 t5 t9 t10 t11 t12P13

[12,31] [3,3] [20,24] [2,2][6,10][3,3]

(2)R3

[4,4]

tdt

[6,10]

DTC

P10 Death Token Class

Fig. 7. Watch dog

intervals associated with transitions) where a specific
place corresponds to the “death token class”. Watch
Dogs are commonly used to analyse behaviours which
deviate from their normal evolution. As there exists
an equivalence between a p-time Petri Net and a t-
time Petri Net in case of the earliest firing strategy
[Khansa 1996], it will be possible to transform a con-
flict state given by a p-time Petri Net model into a t-
time Petri Net model corresponding to a typical case
of Watch Dog where one of the transitions in struc-
tural conflict represents the normal evolution of the
system and the other one signals a time constraint
violation. For example, considering the conflict sit-
uation for the shared resource R3 shown in figure 5,
if the reactor R3 is used to treat batch 1 and, af-
ter that, batch 2, then, the Petri Net in figure 5 can
be transformed into the Petri Net of figure 6. The
problem is then to verify that making this decision,
the reactor R3 will be available in place R3(1) before
the maximum bound of the visibility interval associ-
ated to the token in place P10, which represents the
latest date authorized for the firing of transition t9.
On the contrary, a death token class will be reached.
The Watch Dog modelled by the t-time Petri Net
in figure 7 represents such a situation. In particu-
lar, this Watch Dog specifies that, at date D10 +
10 (D10 is the date when the token appears in P10
and 10 is the maximum bound of the time interval
associated to transition tdt), if the transition t9 has
not been fired yet (which means that the resource in
R3(1) is not available at this moment for the firing of
t9 in figure 6), then the transition tdt has to be fired
and a death token class, which corresponds to a time
constraint violation, will be reached. The place R3(1)

does not appear in the Watch Dog because its static
interval is [0;∞[and, as a consequence, the effect of
this place on the temporal reasoning is useless.

In [Rivière 2001], it was shown that apply-
ing the sequent calculus of Linear Logic to a Watch
Dog represented by a t-time Petri Net and using a
non conventional (max;+) algebra, production and
consumption symbolic dates assigned to each atom
(token) involved in the studied scenario can be cal-
culated. In particular, comparing the symbolic dates
of the tokens which belong to the places in structural
conflict, it is possible to know if the Watch Dog ef-
fectively invalidates the normal operations, i.e. if a
“death token class” can be reached.

With Linear Logic [Girard 1987], a marking
M is a monomial in ⊗, that is a marking represented

by M = A1⊗A2⊗· · ·⊗Ak where Ai are place names.
For instance, the initial marking on the Petri Net in
figure 7 is P3⊗P10. A transition is an expression of
the form M1 � M2 where M1 and M2 are markings.
For example, transition t3 on the Petri Net in figure
7 is noted t3 = P3 � P4. A sequent M, ti � M ′

represents a scenario where M and M ′ are respec-
tively the initial and final markings, and ti is a list
of non-ordered transitions. A sequent can be proved
by applying the rules of the sequent calculus as there
exists an equivalence between Petri Nets reachabil-
ity and the proof of sequents in Linear Logic [Girault
1997]. A Linear Logic proof tree is read from the bot-
tom, up and a proof stops when all the leaves of the
tree are identity sequents (P1 � P1, for example).

In a proof tree, each transition firing gener-
ates a symbolic date associated to each atom (to-
ken) as shown in [Rivière 2001]. In this article, Di

will denote a date and di a duration associated to a
transition firing. A pair (Dp,Dc) will be associated
to each atom of the proof tree; they respectively rep-
resent the production and the consumption date of
atoms.

From the watch dog of figure 7, two scenarios
can be derivated :

Sc1 = P3 ⊗ P10, t3, t4, t5, tdt � P6 ⊗ DTC

Sc2 = P3 ⊗ P10, t3, t4, t5, t9, t10, t11, t12 � R3(2)

These scenarios are in conflict i.e. one sce-
nario invalidates the other. As a matter of fact, Sc2
represents the normal evolution of the system when
Sc1 represents a time constraint violation (a “death
token class”). Table 1 shows the production and con-
sumption dates in the scenario Sc1 case. Table 2 and
3 show the production and consumption dates in the
scenario Sc2 case.

In a t-time Petri Net model, any enabling
duration di takes its values within a time interval
[δi,min; δi,max]. For example, when considering the
scenario Sc1, the domain for the consumption date of
atom P4 (the token in P4) is given by the time inter-
val [D3+d3,min+d4,min;D3+d3,max+d4,max]. Based
on a property shown in [Rivière 2001], it is possible
to say that Sc1 invalidates Sc2 (which means that the
death token class will be reached) if the maximum
value of the enabling duration of tdt in scenario Sc1
is smaller than the minimal sojourn time of atom P6
in scenario Sc2. For example, when considering the
Petri Net in figure 5, if a token appears in P3 at
date D3=23, its visibility interval is [35 ; 54], and,
if a token appears in P10 at date D10=36, its vis-
ibility interval is [42 ; 46]. Then, it seems natural
to fire transition t3 at date 35 when the token in P3
becomes available. From the symbolic production
and consumption dates obtained when scenarios Sc1
and Sc2 are considered, the following results are ob-
tained : the minimal production date of atom P6,
which is equal to D3 + d3,min + d4,min + d5,min =

Transition Consumption Date Production Date

t3=P3�P4 P3(D3+d3) P4(D3+d3)

t4=P4�P5 P4(D3+d3+d4) P5(D3+d3+d4)

t5=P5�P6 P5(D3+d3+d4+d5) P6(D3+d3+d4+d5)

tdt=P10�DT C P10(D10+ddt) DT C(D10+ddt)

Table 1. Consumption and Production dates for Scenario 1

Transition Consumption Date

t3=P3�P4 P3(D3+d3)

t4=P4�P5 P4(D3+d3+d4)

t5=P5�P6 P5(D3+d3+d4+d5)

t9=P10⊗P6�P11 P6(max(D3+d3+d4+d5,D10)+d9)

P10(max(D3+d3+d4+d5,D10)+d9)

t10=P11�P12 P11(max(D3+d3+d4+d5,D10)+d9+d10)

t11=P12�P13 P12(max(D3+d3+d4+d5,D10)+d9+d10+d11)

t12=P13�R3(2) P13

(max(D3+d3+d4+d5,D10)+d9+d10+d11+d12)

Table 2. Consumption dates for Scenario 2

23 + 12 + 3 + 20 = 58, is bigger than the maximal
consumption date of atom P10, which is equal to
D10 + ddt,max = 36 + 10 = 46. As a direct conse-
quence of this result, the firing of t3 as soon as the
token in P3 becomes available will not be allowed by
the conflict resolution mechanism which will be used
at the global simulation level.

IV. Simulation principle

One of the approaches which allows one to ex-
ecute dynamically a Petri Net is the one based on a
token player algorithm. A token player algorithm is
a special inference mechanism which allows the fir-
ing of the enabled transitions. When the model is
based on a p-time Petri Net, the token player al-
gorithm must take into account the conflict situa-
tions in real time in order to avoid the possibility
of deadlock which can be caused by a “death token
class”. The basic principle of such an algorithm was
presented in [Julia 2000]. Figure 8 shows how this
algorithm works. The basic difference between our
proposed token player and other token player algo-
rithms used in simulation tools based on Petri Nets

Transition Production Date

t3=P3�P4 P4(D3+d3)

t4=P4�P5 P5(D3+d3+d4)

t5=P5�P6 P6(D3+d3+d4+d5)

t9=P10⊗P6�P11 P11(max(D3+d3+d4+d5,D10)+d9)

t10=P11�P12 P12(max(D3+d3+d4+d5,D10)+d9+d10)

t11=P12�P13 P13(max(D3+d3+d4+d5,D10)+d9+d10+d11)

t12=P13�R3(2) R3(2)

(max(D3+d3+d4+d5,D10)+d9+d10+d11+d12)

Table 3. Production dates for Scenario 2

Transition Firing ?

Decision making mechanism

minimal bound of

a visibility interval
Next

Event

Enabled

Transition ?

no

yes

no

Transition Firing

New Marking

New Visibility Intervals

yes

Constraint
Violation
Detection

visibility interval

maximal bound of a

Fig. 8. Token Player Algorithm for a p-time Petri net

7. Release R2()

TE1 R1

Batch 1

TE4

2: Transfer to R1()

14: Release R3()

Storage Tank 1()
13: Transfer to

9: Release R3()

8: Transfer to
Storage Tank 2()

1: Process
in R1()

10: Process in R3()

11: Transfer Batch 1 to R3()

5: Process in R3()

3: Process in R2()

6: Transfer Batch 2 to R3()R3 TE3

Batch 2 R2

TE2

12: Release R1()

4: Transfer to R2()

Fig. 9. Collaboration Diagram

models is that transitions are not fired necessarily as
soon as they become enabled because of the conflict
resolution mechanism presented in the previous sec-
tion. For example, if the input transitions of P1 and
P8 in figure 4 are fired at date D1=D8=0 (beginning
of recipes execution), the result of the global sim-
ulation based on the token player algorithm is the
following one : date 21 = t1 fired; date 23 = t2 fired;
date 30 = t7 fired; date 35 = t3 enabled, but not
fired; date 36 = t8 fired; date 42 = t9 fired; date 45
= t10 fired; date 51 = t11 fired; date 53 = t12 fired;
date 53 = t3 fired; date 56 = t4 fired; date 76 = t5
fired; date 80 = t6 fired. As a result of the token
player execution, an acceptable scenario correspond-
ing to a specific firing sequence is obtained and can
be translated into the collaboration diagram of figure
9 which represents the global behaviour of the Real
Time System from the UML point of view. In this
diagram, it is clear that batch 2 has to be processed
in reactor R3 before batch 1 in order to respect the
time constraints.

V. CONCLUSION

The principal advantage shown in this article
is the possibility of accelerating the conflict resolu-
tion in a p-time Petri Net. This is realized by us-
ing the sequent calculus of Linear Logic and a non
conventional (max;+) algebra which allows the cal-
culation of symbolic dates, instead of real numerical

values. As a direct consequence, the generation of
a class graph, each time a conflict situation is met,
is not necessary anymore and the global duration of
simulation when considering Real Time UML speci-
fications is reduced.

References

[Cardoso 2001] Cardoso, J., Sibertin-Blanc. (2001).
Ordering actions in Sequence Diagrams of UML.
23 International Conference on Information
Technology Interfaces. Croatia.

[Girard 1987] Girard, Jean-Yves. 1987. Linear
Logic. Theoretical Computer Science. 50:1-102.

[Girault 1997] Girault, F. 1997. A logic for Petri
nets, JESA Vol. 31, n.3, Eddition Hermes

[Julia 2000] Julia, S., Valette, R. (2000). Real Time
Scheduling of Batch Systems. Simulation Prac-
tice and Theory, Elsevier Science. pp. 307-319.

[Julia 2002] Julia, S., Kanacilo, E., M. (2002). An
approach based on dynamic UML diagrams and
on a token player algorithm for the scenario ver-
ification of real time systems. 14TH European
Simulation Symposium, Simulation in Industry.
Dresden, German. p. 377-381.

[Khansa 1996] Khansa, W., Aygaline, P., Denat, J.
P. (1996). Structural analysis of p-time Petri
Nets. Symposium on discrete events and man-
ufacturing systems. CESA’96 IMACS Multicon-
ference. Lille, France.

[Murata 1989] Murata, T. (1989). Petri Nets: Prop-
erties, analysis and applications. Proceedings of
the IEEE 77(4). pp. 541-580.

[OMG 1999] OMG Unified Modeling Language
Specification version 1.3. Object Management
Group.

[Rivière 2001] Rivière, N., Pradin-Chezalviel, B.,
Valette, R. (2001). Reachability and temporal
conflicts in t-time Petri Nets. 9TH International
Workshop on Petri Nets and Performance Mod-
els (PNPM’01). Aachen-Germany. pp. 229-238.

STÉPHANE JULIA received his Ph. D. degree from
the University “Paul Sabatier” of Toulouse (France)
in 1997. He is currently a Professor at the Federal
University of Uberlândia (Brazil) in the Computer
Science Department. His current research interests
include the application of Petri net theory in Real
Time Systems. He is also interested in the relation-
ships between Petri nets and UML notation.

MICHEL dos S. SOARES received his degree in Com-
puter Science from the Federal University of São Car-
los (Brazil) in 2000. He is currently doing his Mas-
ter’s Degree at the Federal University of Uberlândia
(Brazil), where he is researching on UML, Petri nets
and Linear Logic. He is also a Computer Science
professor, in the field of Software Engineering.

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

