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ABSTRACT

Agents are autonomous software aimed at working in
dynamic environments and thus form a specific type of
embedded software systems. To test this type of soft-
ware simulation systems can be successfully employed.
Agents might be modeled, be partly embedded in, or
coupled to the virtual environment they are tested in.
Depending on the degree of being embedded in the vir-
tual environment, the type of execution that supports
an efficient and effective simulation varies. In James
(A Java-Based Agent Modeling Environment for Sim-
ulation) different simulators have been implemented.
Unpaced and paced simulators support interaction in
simulation- and real-time differently. Moving from un-
paced to paced execution, the simulator exercises less
control over the experiment and the coupling between
simulation and agents to be tested is loosened.

1 INTRODUCTION

Agents can be interpreted as software systems that
are aimed at working autonomously in dynamic and un-
certain environments (Jennings et al. 1998). The inter-
relations between agents and simulation are manifold
(Uhrmacher et al. 2001). Software agents are used to
develop “state of the art” simulation systems and agents
are used as a metaphor for modeling dynamic systems
as collections of autonomously interacting entities. Soft-
ware agents are often mission critical (or even safety
critical) and, like other software systems, must be tested
and evaluated before being deployed. Their autonomy

and the open heterogeneous nature of the environment
in which they operate make testing and evaluation more
difficult than in the case of more conventional software
systems. As agents are aimed at working in dynamic
environments, simulation seems a natural approach to-
wards testing the behavior of an agent system in inter-
action with its environment.

The implementation and application of dynamic test
scenarios for multi-agent systems require considerable
modeling effort. Already early simulation systems for
agents allowed to plug code fragments, or single modules
into the skeleton of an agent model (Montgomery and
Durfee 1990). Others treat agents as external source and
drain of events (Pollack 1996). The continuity of mod-
els from specification via simulation to implementation
shall help reducing flaws during the design of software
systems (Hu and Zeigler 2002). However, it is less the
continuity of models during designing agent systems we
will discuss in this paper but the different types of simu-
lators that accompany the different stages of developing
agents.

Based on James (Schattenberg and Uhrmacher 2001)
(A Java based Agent Modeling Environment for Simu-
lation) and based on the project Autominder (Pollack
et al. 2003) that is aimed at developing a planning agent
software supporting elderlies in their homes, we will il-
lustrate our approach for testing agents.

2 JAMES

James has been developed based on the formalism
dynDevs. The model design of James resembles that
of Devs (Discrete Event System Specification) (Zeigler
et al. 2000) extended by means for reflection which al-
lows agents to adapt their composition, interaction, and
behavior patterns. Models can create new models and
add them to the coupled model they belong to, they can
remove themselves, and they can access their interaction
structure. To initiate structural changes outside their



boundary, agents have to turn to communication and
negotiation. Thus, a movement from one coupled model
to another implies that another atomic model complies
with the request to add the moving model into the new
interaction context. To facilitate modeling, all atomic
models are equipped with default methods that allow
them to react to those requests. However, these de-
fault reactions can be suppressed to decide deliberately
what requests shall be executed. The freedom to decide
whether to follow a certain request, e.g. to commit sui-
cide, and its knowledge, i.e. beliefs about itself and its
environment, distinguish active agents from more “re-
active” entities (Jennings et al. 1998). The ports of
Devs models, which are used for communication be-
tween models, are complemented by peripheral ports
in James. Models communicate via peripheral ports
with processes that are external to the simulation. Time
models allow to transform the resource consumption of
the external processes into simulation time (Schatten-
berg and Uhrmacher 2001; Riley and Riley pear). The
modular, hierarchical modeling concept facilitates the
re-use of components and thus the construction of vir-
tual test environments by composition.

James has been used for testing different types of
software agents. As other simulation systems (Mont-
gomery and Durfee 1990) it allows to plug in code frag-
ments, or single modules, whereas the agent itself is
specified as part of the model. We followed this ap-
proach by testing planning agents in a Tileworld sce-
nario in James (Schattenberg and Uhrmacher 2001). In
later phases, the ability to execute agents as they are,
and to switch arbitrarily between an execution in the
real environment and the virtual test environment gains
importance. If simulator and agent software are only
loosely coupled (Pollack 1996; Anderson 1997), agents
are typically only perceivable by their effects in the vir-
tual environment and no longer really controlled by the
simulation. To bridge the gap between earlier and later
phases in designing agents and to support the continu-
ity of models, the idea of representatives has been intro-
duced in James. The idea took concrete form in testing
and plugging agents of the mobile agent system Mole
into James (Uhrmacher et al. 2002).

3 THE EXAMPLE - AUTOMINDER

Autominder is a software agent designed as a cog-
nitive orthotic which shall assist elderlies with memory
impairment in carrying out their daily life activities.
Therefore, the activities of elderlies are monitored and
elderlies, if they forget or confuse certain activities, shall
be reminded in a timely and adequate manner (Pollack
et al. 2003; McCarthy and Pollack 2002; et al 2002).
The software is being developed in the context of the

Initiative on Personal Robotic Assistants for the Elderly
(Montemerlo et al. 2002) and installed on the nursebot
Pearl.

Figure 1: Structure of the Autominder Agent (Pollack
et al. 2003)

The architecture of Autominder comprises the com-
ponents: Client Modeler (CM), Plan Manger (PM) and
Personal Cognitive Orthotic (PCO). The role of the CM
is to interpret the sensor information and based on a
given plan to identify activities that are just started or
being ended and to notify the Plan Manager. The CM
maintains and updates a client model which contains
observations and is used to derive regular behavior pat-
terns of the elderly. The Plan Manager maintains a plan
in terms of activities the elderly is supposed to perform,
i.e. the client plan. Subsequently the plan can be up-
dated by the caregiver and to a certain degree also by
the elderly. The plan manager checks the client plan
for inconsistencies and is responsible for resolving po-
tential conflicts. Based on the client plan and the client
model, the PCO finally decides what kind of reminders
to launch at which time.

The Autominder agent combines reactive and de-
liberative abilities, like planning and learning. Taking
opportunities into account while not loosing track of
pursued goals is seen as one of the central challenges
in developing successful agent software (Wooldridge and
Ciancarini 2000). Therefore, the mediation between re-
activity and deliberation and its effect on the perfor-
mance of agents has traditionally been at the core of
evaluating hybrid agents in small play world scenarios
e.g. (Cohen et al. 1989; Kinny et al. 1996; Schattenberg
and Uhrmacher 2001).



4 TOWARDS A MODEL-BASED
TESTING OF AUTOMINDER

Some time has elapsed since Paul Cohen, Steve
Hanks, and Martha Pollack wrote their paper on con-
trolled experimentation, agent design, and associated
problems (Hanks et al. 1993). Their controversy about
testing in the small and testing in the large in de-
signing agent systems has neither lost its topicality
nor its virtue, though. Test beds, e.g. Dvmt (Dur-
fee 1988), Phoenix (Greenberg and Westbrook 1990),
Tileworld (Pollack and Ringuette 1990), soccer game
(Kitano et al. 1997), and large scale disasters (Kitano
et al. 1999) represent a complement to conventional
benchmark tests, offering test scenarios which are aimed
at revealing prototypical problems in dynamic environ-
ments. Within this testing in the small, it is not the pur-
pose to confront the agent with a valid model of the con-
crete environment the agent shall dwell in. In contrast
“testing in the large” is based on test cases that shall
emulate requirements of the real environment. Often
test cases are based on and sometimes even automati-
cally generated from software requirements, source-code
statements, and module interfaces (e.g. (Peraire et al.
1998)). However, whereas for many embedded systems
a clear specification of the software and the required
functionality exists, this is not necessarily true for agent
systems. Instead Wooldridge and Jennings observe that
“the development of any agent system - however trivial
is essentially a process of experimentation” (Jennings
and Wooldridge 1998). Therefore, experimentation has
been part of developing agents from the very first.

Autominder’s activities are constrained by time: it
has to react timely and appropriate to the elderlies ac-
tions and reactions. Most agent’s decisions and delib-
erations are limited by time. The timeliness and ad-
equacy of their reaction determine their performance.
Autominder’s activities are triggered by the flow of
time: many of the activities of elderlies are scheduled
for certain times of the day and the robot has to remind
the elderly in time if these activities are crucial for the
elderlie’s health. So Autominder displays situation-
triggered and time-triggered activities.

If Autominder is tested in its real environment, in-
teraction happens in physical time. A significant evalu-
ation of the performance of Autominder would likely
take at least a month — besides the problem to find suit-
able test persons for the experiments. The functionality
of Autominder can not be tested based on one time
point only. Its interaction with the environment has to
be observed over a period of time. Thus, simulation
seems a natural approach towards testing the behavior
of this agent system in interaction with its environment.

Environment models are used to generate the differ-

ent test cases dynamically during simulation, includ-
ing specific interaction patterns and time constraints
(Schütz 1993, p.23). The focus of model-based testing
shifts from the specification of the software to modeling
the dynamic environment of the agent.

Figure 2: Structure of the James Model for Testing the
Autominder Software

Using simulation for testing software means to de-
velop software, including models, routines for initializa-
tion of models and the simulation engine. Particularly,
if software is used for testing other software, it is crucial
that certain quality characteristics of the software prod-
uct, including accuracy, can be assured. Component-
based development of software is valued as an effective
and affordable way to facilitate verification, validation
and accreditation of modeling and simulation applica-
tions (Balci et al. 2002).

To ease the process of obtaining confidence that the
model can be considered valid for its intended applica-
tion (Sargent 1999), a component-based design of the
model, where model components can be inspected sep-
arately, and the simulation system, which supports dif-
ferent approaches towards testing (see next section), has
been chosen. The virtual environment in which Auto-
minder shall be tested is built up of four different model
components (Fig. 2) that can be evaluated separately.
The model component Elderly represents the client to
be supported by Autominder. The Robot represents
a nursebot endowed with Autominder. Coupling Au-
tominder, which runs concurrently and externally to
the simulation, and the virtual environment is done by
utilizing the Robot component as an interface between
simulation and agent software. Autominder sends its
time labeled events to the robot who charges its output
ports with these events at the specified time. From the
ports they are automatically transferred to the other
models as defined by the couplings. The robot has to



explicitly request new status information about its en-
vironment from the model Environment. The model
Caregiver forwards new plans to the Robot and Au-
tominder.

The intention of our experiments with Autominder
is behavioral testing or black box testing. The goal of
Autominder is to provide elderlies with timely and ap-
propriate reminders. This implies that Autominder
has to find a balance between maximizing the elder-
lies compliance in performing his or her daily activities,
maximizing the satisfaction of elderly and caregiver with
the system, and avoiding making the elderly overly re-
liant on the system (Pollack et al. 2002). To achieve
these goals the system has to be adaptable to different
types of elderlies, actors, and circumstances which have
to be represented with a sufficient accuracy.

So far Autominder has been tested manually: a user
informs interactively Autominder about activities of
the elderly and advances the virtual time. The goal
of experiments based on James is to test the behavior
and the adaptation strategies of Autominder by us-
ing different model components representing explicitly
different types of elderlies and domestic environments.

5 SIMULATOR

Executing the model according to the user’s spec-
ification and the given initial situation is the task of
a discrete event simulator. Simulation models are in-
terpreted and executed by a tree of processors, which
reflect the hierarchical compositional structure of the
model (Fig. 3). Each of the processors is associated
with a component of the model and is responsible for
invoking the component’s methods and controlling the
synchronization by exchanging messages with the other
processors of the processor hierarchy. The change of
model structure is reflected in an according change of
the processor tree. Different distributed, parallel execu-
tion strategies have already been implemented in James
based on the abstract simulator introduced in dynDevs
(Uhrmacher and Gugler 2000; Uhrmacher and Krah-
mer 2001). Whereas one adopts a conservative strategy
where only events which occur at exactly the same sim-
ulation time (including starting external processes) are
processed concurrently, two other strategies split simula-
tion and external processes into different threads and al-
low simulation and deliberation to proceed concurrently
by utilizing simulation events as synchronization points.
All simulators currently execute in an unpaced mode
which means that simulation time does not elapse in re-
lation to wall clock time but jumps as fast as possible
from one event to the next, neglecting the simulation
time (and thus the represented physical time) that lies

Figure 3: Models and Corresponding Simulator Tree in
James

inbetween (Fujimoto 2000). Within the limits that are
determined by the wall clock time required to execute
events, paced simulations can be scaled to allow a faster
or a slower progression of time. The scaling factor can
be changed during simulation, to skip in a fast mode
through less interesting episodes and to zoom in to ex-
plore interesting episodes in detail. Paced simulations
are typically used for training humans, whereas unpaced
simulations are used for analytical purposes. Both allow
the interaction with humans and with external soft- or
hardware. However, their means and also their focus is
different.

5.1 UNPACED SIMULATOR

The following conservative simulator supports an as-
fast-as-possible discrete-event-simulation and exploits
the parallelism inherent in concurrently deliberating
multiple agents.

Figure 4 describes the *-handler of the simulator,
which is at the core of the overall simulation algorithm.
Besides a *-handler, simulators are equipped with a #-
handler for dealing with inputs. Coordinators have ad-
ditionally a done-handler which records that events have
been processed or guarantees are given.

The simulator of a model is activated by the *-
message, which indicates an internal, external, or con-
fluent event. With the label guarantee? set to true the
*-handler of the simulator is asked to guarantee that
none of its pending external processes will finish before
the time t.

The set busy is updated by the external agent pro-
cesses which adds busyi to it in the moment the process
i is started. If the process has finished, busyi is deleted
from the set busy. The resource consumption of the
process is recorded, as are the results with which the



when an input (∗, guarantee?, xCount, t) has been received

am is the associated model

outCount = 1

if guarantee? then

block until for all i ∈ busyfixed

tstarti + timeModel(i) > t ∨ i 6∈ busy
justFinished = {i|i ∈ busyfixed \ busy}
for all i ∈ JustFinished

tfinishedi
= tstarti+ timeModel(i)

tfinished = tfinished ∪ {tfinishedi
}

tstart = tstart \ {tstarti}
busyfixed = busyfixed \ {busyi}

send (done, min(tnext, tfinished), ∅,
outCount, (busyfixed 6= ∅)) to parent coordinator

else

if ¬ guarantee? then

inpCount = xCount
tmin = min(tfinished, tnext)
tfinished = tfinished \ {tfinishedi

∈ tfinished|tfinishedi
= t}

if t = tmin then

if t = min(tfinished) then flush zi

send (λ(s, zi)) to parent

if xCount = 0 then

(s, zo) = δint(s, zi)
else

block until inpCount = 0
(s, zo) = δcon(s, xb, zi)

endif

else

block until inpCount = 0
(s, zo) = δext(s, t− tlast, xb, zi)

endif

for all i ∈ busy \ busyfixed

tstarti = t
tstart = tstart ∪ {tstarti}
busyfixed = busyfixed ∪ i

am = ρ(s)
tlast = t
tnext = tlast + ta(z, s)
send (done, min(tnext, tfinished),

varStrucRequest(s), outCount, (busyfixed 6= ∅))
to parent coordinator

endif

endif

end

Figure 4: The *-handler of the unpaced simulator in
James

peripheral input ports zi shall be charged. The proce-
dure which starts the external process within a separate
thread generates unique names for the processes with
which its start time, the finish time, and the results
are labeled. busyfixed contains the processes that the
simulator believes to be running. busy contains the pro-
cesses which are actually running. tstart embraces the
starting time of all processes the simulator believes to
be running. It is incremented when a new process is
started and decremented when the simulator discovers
a completion. tfinished lists the completion time of all
processes of whose completion the simulator is aware.

If at least one external process is running the sim-
ulator blocks until each of the processes running has

RootCoordinator

send (guarantee 18?)
12

Simulator

ComputationHandler

Personal Cognitive Orthodic

sleep

sleep

12
guarantee 18

tsim tWC

startPCO

8 + timeModel(PCO) >= 18

7

8

18
send (*, 18)

8 + timeModel(PCO) < 18

send (Activity Info)

startcallPCO

update (Activity Info)

finished endcallPCO

Figure 5: The Interaction between Simulation and Au-
tominder in the Unpaced Version in James

either reached the current simulation time or has been
finished. The processes which just have been finished
are determined, and for all of them the virtual time of
finalization is calculated. The sets tfinished, tstart and
busyfixed are updated.

If guarantee? is set to false, the *-message announces
an event and a confluential δcon, internal δint, or exter-
nal δext transition is due. If at the current time the
completion of a deliberation process is scheduled, the
peripheral port zi is charged with the results of this de-
liberation process. The transition functions update the
state and generate outputs which are directed towards
externally running software, e.g. invoking a delibera-
tion process. After executing the transition function
it is checked whether new processes have been started.
Their starting time is determined and the sets tstart and
busyfixed are updated. Afterwards structural changes
are executed at the level of the atomic model by invok-
ing the model transition ρ. The time of last and time
of regular next event are determined. The coordinator
is informed of the time of next event and whether any
structural changes at the level of the coupled model are
due. If agents deliberate sufficiently long and a sufficient
number of processors are available, multiple deliberat-
ing agents can be executed nearly at the cost of one
deliberating agent (Uhrmacher and Krahmer 2001).

In the unpaced simulation (Fig. 5), the simulator
controls the execution of agents, by invoking the meth-
ods, recording the simulation time when the external
software has been started and by transforming the re-
sources consumed during the execution of external soft-
ware into simulation time to determine when the execu-
tion has been finished in simulation time. The simula-
tion, its view of the world and particularly its view on
time, controls the experiment: the software is executed
embedded in the virtual environment. Performance cri-
teria can be calculated, and bottlenecks can be identi-
fied. The user can interactively set parameters by exe-



cuting the simulation in stepping mode or by introduc-
ing break-points in the simulation. This version of the
simulator is suitable if separate modules of Automin-
der shall be tested, e.g. the personal cognitive orthotic
and specific methods of Autominder are invoked. The
orthotic module of Autominder receives information
about the elderly including his or her whereabouts and
the originally planned schedule of the elderly. This in-
formation is provided by the client and plan manager
module of Autominder. Part of its functionalities are
now part of the modeled robot. In latter stages of de-
signing Autominder the control of the simulator might
be slightly loosened.

5.2 PACED SIMULATOR

The following simulator is a first attempt to support
a paced simulation and an asynchronous exchange of
messages between simulator and external software. In
paced simulation: each advance in simulation time is
paced to occur in synchrony with a scaling factor times
an equivalent advance in wall clock time.

when an input (∗, xCount, t) has been received

am is the associated model

outCount = 1

inpCount = xCount

block until W2S(WallclockT ime)1) >= t
flush zi

if t = tnext then

send (λ(s, zi)) to parent

if xCount = 0 then

(s, zo) = δint(s, zi)
else

block until inpCount = 0
(s, zo) = δcon(s, xb, zi)

endif

else

block until inpCount = 0
(s, zo) = δext(s, t− tlast, xb, zi)

endif

am = ρ(s, zi)
tlast = t
tnext = tlast + ta(s, zi)
send (done, tnext, varStrucRequest(s), outCount) to

parent coordinator

end

1) W2S(twc) = tsimStart + scale ∗ (tw − twcStart)

Figure 6: The *-Handler of a Simulator in James -
Paced

Each simulator blocks until its local virtual time has
reached the wall clock time (Fig. 6). The simulator is
a scaled paced simulator which allows to let the simu-
lation run twice or half as fast as wall clock time. The
speed up of simulation is constrained by the execution
speed of simulation events and by the execution speed of
the external software. Every time an event takes place

tnext = tnext(topmost coordinator)

repeat until tnext > tEndOfSimulation ∨ (tnext = ∞)

while W2S(wallclockT ime) < tnext − ε
if externalMessageArrived

externalMessageArrived = False

tnext = W2S(wallclockT ime)
endif

endwhile

send (∗, 0, tnext) to topmost coordinator

wait for (done,t,varStruc,outCount)

from topmost coordinator

tnext := t

end

Figure 7: The Root Coordinator in James

the peripheral ports are flushed, i.e. they are read and
emptied afterwards. Simulator and external software
exchange messages in an asynchronous manner.

The simulation is notified that messages from exter-
nal software systems have been arrived and thus have
to be processed. The notification is propagated up the
tree towards the root coordinator. For propagating the
notification, the done threads of the coordinators are
used which mark the coordinators along the way and
thus allow afterwards to trigger top down the correct
components of the processor tree. During their propa-
gation upward, notifications are caught by *-messages
traveling down the processor tree. In this case the cur-
rent simulation pulse will be used for processing. Only
if a message arrives in a sufficiently large gap inbetween
events scheduled in the simulation, it will reach the root
coordinator and trigger a simulation pulse.

The root coordinator is traditionally responsible for
advancing simulation time in James. Also in the
paced variant it controls the advance in simulation time.
Therefore, it blocks the simulation for some time be-
fore informing its children. If this were not the case
and only the simulators were responsible for blocking
the simulation, an external software could not trig-
ger any event before the next scheduled event at tnext

would have been executed. Holding the simulation at
the root coordinator allows that the external software
can trigger events between the current simulation time
and the time of scheduled events. The ε accounts for
real time delays that are caused by propagating mes-
sages from the root to the simulators. The idea is to
choose ε sufficiently large, so that the simulators are trig-
gered by the *-message in advance to be able to block
W2S(WallclockT ime)1) >= t and do not fall behind
the wall clock time. However, this blocking time of the
simulators should be minimized. Since during the time
the simulators (and coordinators) are processing events,
the root coordinator is waiting for done messages and
will not acknowledge incoming messages from external
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Figure 8: The Interaction between Simulation and Au-
tominder in the Paced Version in James

software systems. Messages will be handled promptly
by the simulator however with a possible delay which is
caused by propagating messages up and down the pro-
cessor tree, and processing current events (Fig. 8).

Time stepped execution is the predominant model for
paced simulation. Particularly in combination with vi-
sualization the procedure seems appropriate. The simu-
lation is executed as a series of discrete intervals of time
∆t. In each time interval messages are retrieved, the
new internal state is computed, and messages are sent
to other logical processes. After this the internal time
is incremented by ∆t and suspended until the time is
reached. All messages are delivered in receive order and
assumed to be relevant for now. Zeigler and his stu-
dents adapted this approach and implemented a real-
time event-based simulator (Cho et al. 2000). As the
simulator exchange messages in receive order and not
in time stamp order, no coordinator or root coordina-
tor is necessary. Compared to this procedure of real-
time execution our paced execution realizes a kind of
hybrid. The proposed paced simulator asynchronously
communicates with external software, both, simulator
and agents, exchange information in receive order. How-
ever, within the simulation events are executed in strict
time stamp order and resemble the typical analytic sim-
ulation. By supporting time stamped events in the dis-
tributed simulation of James an overhead is induced.
E.g. currently events that are initiated by messages
from external software are processed at a simulation
time that lags wall clock time. Even though first ex-
periments have shown that the delay seems not critical,
a more systematic analysis of the behavior of the simula-
tor is necessary. For this purpose yet another real-time
simulator is currently being implemented that will pro-
cess events in receive order and not in time stamp order.
In both simulators the problem of ensuring repeatability
of simulation needs still to be addressed (McLean and
Fujimoto 2000).

The role of the robot model is currently only to medi-
ate between the dynamic virtual environment and Au-
tominder: it frequently requests status information
about the environment, information from the environ-
ment are forwarded to Autominder, and the output of
Autominder is redirected into the simulation model
and forwarded to the elderly. In other experiments,
e.g. when the information about the elderly is transmit-
ted directly by sensors in the flat, more detailed models
about the soft- and hardware environment of the Au-
tominder system will be probably required.

The paced version is used to loosely couple the entire
Autominder software to James. To tune the simula-
tion to run faster than real time, the internal clock of
Autominder has to pace time with the same scale as
the simulator does.

6 DISCUSSION

Testing activities support quality assurance by gath-
ering information about the nature of the software be-
ing studied. Little work has been done so far on de-
veloping methods for testing agents (Dam and Winikoff
2003). Whereas verification deals with transformational
accuracy, validation deals with behavioral or represen-
tational accuracy. The analysis of temporal properties
of software can be done statically or dynamically, the
later is based on the execution of software.

Same as the functionality of real-time systems and
embedded systems, the functionality of agent systems
can not be evaluated based on an a priori fixed input
specifications, but only as a course of reactions to the
evolution of an environment. As agents are aimed at
working in dynamic environments, simulation seems a
natural approach towards testing the behavior of an
agent system in interaction with its environment. Its in-
teraction with the environment has to be observed over
a period of time. The usage of a virtual environment in
contrast to the real environment typically reduces costs
and efforts and allows to test system behavior in “rare
event situations”. Virtual environments are easier to
observe and to control, and probe effects are easier to
manage. Simulation is mainly seen as a tool to validate
temporal properties of models (Edwards et al. 1997).
We like to widen the usage of simulation to embrace val-
idation of the final software product as well, i.e. to use
simulation throughout the development process. Exe-
cution monitoring, profiling and tracing, as provided by
the simulation system, can be employed to assess the
performance of the agent software. The simulated envi-
ronment facilitates the testing of agent’s behavior when
confronted with extreme inputs and put under real-time
pressure.



The simulation application itself is a software prod-
uct and as such must be tested, i.e. verified and val-
idated, in order to install confidence into the executed
tests. Model verification implies that model transforma-
tion occurs with a sufficient accuracy. To verify the sim-
ulation it is required to analyze whether correct trajec-
tories according to the model description are produced.
The model verification does not really apply to our case.
However, the simulation verification is important to as-
sure that the simulation is not only efficient but also
produces reliable results. Ongoing work is dedicated
to analyze the repeatability of simulation runs and the
role of the synchronous and asynchronous interaction of
simulation and external software in more detail. The
design of simulators as components and based on com-
ponents requires a careful analyzing of the components,
in isolation and once integrated, and to determine the
context for which the developed components are truly
exchangeable (Weyuker 1998).

To develop valid models, e.g. of the surroundings
the agent Autominder is supposed to dwell in, poses
serious difficulties. To validate the elderly model com-
ponent data about the interaction of elderlies and nurse-
bots are required. As the testing of basic functionalities
of the nursebot robot in interaction with elderlies has
just started (Montemerlo et al. 2002), a true validation
of the elderly models in daily life seems out of reach.
The best we can do is developing a set of prototypical
and plausible model components that mimic the behav-
ior of elderlies and a couple of bizarre ones to test the
behavior of Autominder in borderline cases. Based
on these models the simulation generates test cases dy-
namically, taking the activities of Autominder into ac-
count. Given the complexity of possible environment
and Autominder interactions an exhaustive testing is
not possible. To trace the execution of Autominder
under a wider range of circumstances, Autominder
can be tested in a virtual world whose model compo-
nents include stochastic aspects. For this type of ex-
ecution monitoring over many simulation runs the un-
paced simulation will likely prove more suitable and the
most interesting traces might be replayed by using the
paced simulator. Thus, the temporal development of
boundary cases can be analyzed in detail based on the
paced simulator, whereas the unpaced simulation helps
to identify these cases. Different simulators provide dif-
ferent approaches towards testing software, which eases
the general experimentation, helps to reveal flaws within
the tested system as well as in the used environmen-
tal models and simulators, thereby increasing the con-
fidence into the used models and testing via simulation
in particular.

As with all testing it is important that different
groups are developing the software and the test scenar-
ios. Independent verification and validation is a tech-

nique of long standing in the field of software engineer-
ing (IEEE 1998, p.58). The simulation software, par-
ticularly its usability, is evaluated by the Autominder
research group. For this assessment, besides the offered
functionalities, the user interface which is currently un-
der development will play a crucial role. A close inter-
action with Autominder research group is currently
directing the development of our models. However, as
soon as the models have left the primordial ooze another
group of the Nursebot project which is working closely
with the elderlies shall help to evaluate the developed
models. The more the project progresses the more the
different research groups will be able to serve as a kind
of software quality assurance group for each others soft-
ware which answers part of the question “quis custodiet
ipsos custodes” (who is guarding the guards).

7 CONCLUSION

The unpaced conservative simulator and the paced
simulator are aimed at testing multi-agent systems con-
taining a small number of deliberative, resource inten-
sive agents. However, both simulators offer a different
degree of control. The unpaced simulator invokes meth-
ods of the external software, responses of which are fed
back into the simulation in simulation time. Our ex-
periences with earlier agent projects indicated that as
agents move from specification to implementation, dif-
ferent types of simulators are required. In the current
project of coupling James and Autominder we will
explore this relation in detail. In this context a paced
simulator is being developed, which advances simulation
time in synchrony with wall clock time and supports a
more realistic view on the virtual world. Agents are
only loosely coupled to the simulator which facilitates a
plug and play for the agent programmer. Whereas for
earlier stages of developing agents an unpaced simula-
tor seems appropriate for a first test of design decisions,
later stages of implementation benefit from the easy plug
and play and the more realistic view on the simulated en-
vironment the paced simulator provides in combination
with an asynchronous exchange of messages. However,
we expect that at some point in the designing process
of agents performance issues of the complete software
shall be analyzed again, and thus the unpaced simula-
tor might come in handy.
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