
A PRACTICAL EFFICIENCY CRITERION FOR THE NULL MESSAGE

ALGORITHM

���������
	�������� † ��� ��������������� ����!
" #%$�&(' ‡) �����%#��+*-, �/. ���� ‡

†Omnest Global Inc., Budapest, Hungary
‡Centre for Telecommunication and Information Engineering, Monash University, Melbourne, Australia

KEYWORDS

Parallel simulation, discrete-event simulation, PDES, clus-
ter computing

ABSTRACT

This paper presents a quantitative criterion for efficient ex-
ecution of the Null Message Protocol, the best-known con-
servative parallel discrete event simulation (PDES) proto-
col. By using the criterion, a model designer can use looka-
head and communication latency as input and improve the
efficiency of parallelization. Earlier works consider looka-
head in relation to model properties like timestamp incre-
ment and in isolation from the capabilities of the underlying
hardware/software simulation environment, and have not
been able to provide quantitative criteria for performance
prediction.

Our results suggest that the performance impact of looka-
head can only be quantified when linked to other perfor-
mance factors such as communication latency and through-
put between partitions of a parallelized simulation model.
The latency and throughput issues are becoming of increas-
ing importance as clusters gain popularity as PDES plat-
forms.

The criterion is based on a novel concept of the coupling
factor, and allows one to use intuitive and easy-to-measure
input parameters. The criterion can be used to assess simu-
lation models’ potential for parallel execution as well as the
maximum partitioning that may still potentially yield good
performance. This paper is also novel in that it uses the
Ideal Simulation Protocol as a benchmark.

INTRODUCTION

Telecommunication networks are increasingly becoming
more complex as the trend towards integration of telephony
and data networks into integrated services networks gains
momentum. Discrete event simulation is an important tool
for the research and design of these systems. However,
simulation of telecommunications networks is generally a
computationally intensive task. A single run of a wireless
network model with thousands of mobile nodes may easily

take several days or even weeks to obtain statistically signif-
icant results even on today’s computers. Additionally, many
simulation studies require several simulation runs to im-
prove statistical reliability of the outcomes (Bagrodia et al.,
1998). These conditions have recently led to an increased
interest in Parallel Discrete Event Simulation (PDES) tech-
niques. Good overviews of PDES techniques can be found
in (Nicol and Fujimoto, 1994) and (Soliman et al., 1995).

Although recent PDES literature focuses more on opti-
mistic algorithms than conservative ones, optimistic algo-
rithms are usually too complex or impractical to imple-
ment in practice. At the same time, we can observe a re-
vival of conservative algorithms as they slowly seem to find
their way into simulation tools. This is especially true for
telecommunication network simulations where the demand
for processing power is the strongest: SSFNet (ssfnet), ns2
(PADS Research Group), OMNeT++ (Şekercioğlu et al.,
2003). Another trend is that clusters (as opposed to shared
memory multiprocessor systems) are becoming an attrac-
tive PDES platform (Pham, 1999), mainly because of their
excellent price/performance ratio. The best known conser-
vative algorithm is still the classic Chandy-Misra-Bryant
(CMB), also known as the null message algorithm (NMA)
(Chandy and Misra, 1979) (Bagrodia and Takai, 2000); we
will use the latter name throughout the paper.

Despite the intensive research efforts on lookahead and
its effect on the performance of the parallel simulation, we
still do not have quantitative criteria for predicting the per-
formance of a parallel simulation. This is especially true
in a cluster computing environment where finite bandwidth
and relatively large communication latencies are present.
Also, Ideal Simulation Protocol (ISP) (Bagrodia and Takai,
2000), a significant and powerful tool for the research of
performance aspects of PDES algorithms was only discov-
ered in 2000, and since then it has gone relatively unnoticed
within the PDES research community.

The first section of this paper describes performance fac-
tors of a parallel simulation. The second part focuses on the
classic NMA algorithm and derives the criterion that can
predict the performance of NMA. The criterion allows the
simulation designer to use input data that are easy to pro-
duce for any given simulation, and it can also be applied
in a cluster environment because it takes into account the
communication latency. The third part describes simulation

experiments done on a cluster to validate the performance
criterion. Here, we use the ISP as a performance bench-
mark.

PERFORMANCE FACTORS

Lookahead

Lookahead has crucial importance in conservative algo-
rithms. Lookahead is associated with the ability of a log-
ical process (LP), in other words, a partition of a model,
to predict its future behavior. It has many, slightly differ-
ent definitions in the literature (Preiss and Loucks, 1990);
for this paper we settle for the following: At any simulation
time T , if an LP can predict that the earliest event it will
cause to occur in another LP is no sooner than T + L, it
has a lookahead of L towards that LP. Lookahead may be
different for each (ordered) LP pair; moreover, lookahead
is, in general, state dependent and may even change during
the execution of the lookahead period.

For specific classes of models, different model compo-
nents can lead to lookahead. In queueing simulations for
example, the fixed processing time of a queue server may
provide lookahead; so can a minimum inter-arrival time in a
source. In telecommunication networks, propagation delay
on links (or propagation delay plus the transmission time
of a minimum-length frame) serves as a natural source of
lookahead. Also, observing the full picture might provide
better lookahead than individual components in the model
– simulation techniques like path lookahead (Meyer and
Bagrodia, 1999) exploit this observation.

It has been observed and is common knowledge that
lookahead has a significant effect on the performance (Fu-
jimoto, 1989). Lookahead and its impact on the perfor-
mance of parallel simulations has been analyzed in (Lin
and Lazowska, 1990), (Preiss and Loucks, 1990), (Wand
and Abrams, 1995) and other papers, and yet the simple
question of when lookahead is large enough to provide rea-
sonable performance has remained unanswered.

Earlier works consider lookahead in relation to model
properties like timestamp increment, and in isolation from
the capabilities of the underlying hardware/software sim-
ulation environment. Our results suggest that the perfor-
mance impact of lookahead can only be quantified when
linked to other performance factors such as communication
latency and throughput between LPs.

Latency and throughput

Early PDES experiments on clusters have delivered disap-
pointing results compared to shared memory multiproces-
sor systems (Pham, 1999). This fact is attributable to much
higher communication costs on clusters, namely (a) high
processing overhead associated with sending and receiving
messages, (b) finite bandwidth of the communication chan-
nel, and (c) higher latencies.

Several studies have been conducted on the performance
of parallel simulations on clusters, e.g. (Lemeire and Dirkx,

2001) and (Xu and Chung, 2001). Most of them focus on
aspects (a) and (b) and tend to ignore (c). In particular,
no studies have linked the question of communication over-
heads with proper lookahead in an attempt to predict the
performance of parallel simulation algorithms.

The Ideal Simulation Protocol

One cannot expect linear speedup from PDES because,
compared to sequential execution, some parts of the model
are now separated by LP boundaries, and transmission of
model messages across LPs presents an overhead that was
not present in the sequential model. Since these messages
are part of the model, we can do little to reduce this over-
head.

In addition to this messaging overhead, we also have
synchronization overhead, an overhead added by the par-
allel simulation (synchronization) algorithm. With NMA,
this overhead is associated with the transmission of null
messages and with time spent blocking on earliest input
times (EITs) (an NMA overview, including the definitions
of terms is provided in the next section. Synchronization
overhead may be reduced by tuning the parameters of the
PDES algorithm or choosing a different algorithm.

When evaluating the efficiency of a parallel simulation
algorithm, it would be useful to know what is the maximum
achievable speedup, that is, the speedup if synchroniza-
tion overhead were zero. Until recently, researchers have
not been able to directly measure the maximum achiev-
able speedup, and hence, PDES studies have been published
without this comparison. The Ideal Simulation Protocol
(ISP) introduced by Bagrodia (Bagrodia and Takai, 2000)
can provide this missing information.

ISP is not an abstraction as it may sound, but an actual
parallel simulation algorithm that can be implemented and
models can be run under it. Running a model under ISP
does not incur any synchronization overhead (in fact, there
is some overhead, but it is usually negligible), while all
other overheads including messaging overhead remain un-
changed. Therefore, ISP presents the upper limit on the per-
formance that any parallel simulation algorithm can achieve
under the same circumstances (executing the same model
with the same partitioning, on the same hardware, using the
same operating system and simulator, with same message
transport between LPs, etc.).

When evaluating the efficiency of various PDES algo-
rithms, their performance ratios in relation to ISP are far
more useful and relevant numbers than the speedup fig-
ures. Comparison to ISP tells us how far we are from the
best achievable parallel performance, while speedup also
contains the messaging overhead, a factor that cannot be
blamed on the synchronization algorithm itself.

PERFORMANCE OF NULL MESSAGE AL-
GORITHM

The Null Message Algorithm

For the discussion of the Null Message Algorithm (NMA),
we use the terminology introduced by Bagrodia in (Bagro-
dia and Takai, 2000). According to NMA, LPs maintain
variables called earliest input times (EITs) for each input
neighbor, and earliest output times (EOTs) for each output
neighbor LP. An EIT stores the earliest simulation time the
LP may receive an event from another LP. Respectively, an
EOT stores the earliest simulation time the LP might send
a message to its neighbor. Practically, EOT represents the
local simulation time plus the lookahead.

LPs are safe to process events until the minimum of
their EITs (“safe” meaning without the danger of receiving
events in their past). Once an EIT has been reached by a LP,
it has to block until the EIT is updated. EITs are updated
by null messages arriving from other LPs. A null message
carries a timestamp, set by the sender LP to its current EOT.
Once the null message arrives, the timestamp will be stored
by the receiving LP as a new EIT. For obvious reasons, EITs
grow monotonically.

LPs must send out null messages often enough to prevent
deadlock, i.e. at least before the expiry of the EOT sent
out in the in the last null message. In the hope of improv-
ing performance, LPs may actually choose to send out null
messages more often than necessary, leading to the desig-
nation of eager and lazy algorithms. Laziness is a tunable
parameter of NMA. For optimization, null messages may
be piggybacked on normal outgoing messages. It has been
proven that the nonexistence of zero lookahead cycles in the
graph is enough to prevent deadlocks.

Performance of NMA

When the NMA performs poorly compared to ISP (note that
NMA can only approximate ISP performance – if parallel
performance under ISP is already poor (e.g. because of too
much cross-partition messaging), it will inevitably be poor
under NMA, too), causes can be traced back to one of the
following two reasons:

a. Too frequent null messages. If lookahead is poor com-
pared to the simulation time between events, that leads
to excessive null message traffic. Resources are con-
sumed by sending, waiting for and receiving null mes-
sages, instead of processing events.

b. Too much time spent on blocking on EITs. In this case,
processors idle too much, waiting for null messages to
arrive. This can be caused by too tight coupling of LPs,
as a consequence of too little workload on LPs, com-
bined with poor lookahead and/or long communication
latencies and/or poor load balancing.

Although not evidenced by measurements, it is strongly felt
that additional factors (such as overhead of null message

sending in case of many LPs) may only be significant if (a)
and (b) are solved. In the following sections we will exam-
ine the above two factors and provide quantitative criteria
for them. We will use the following parameters as input:

• P performance represents the number of events pro-
cessed per second (ev/sec) (we use the following no-
tation: ev: events, sec: real seconds, simsec: simu-
lated seconds). P depends on the performance of the
hardware and the amount of computation required for
processing an event. P is independent of the size of
the model. On the authors’ computer, simulations us-
ing OMNeT++ (Varga, 2001) usually yield P values
between 20,000 and 120,000 ev/sec, depending on the
nature of the model.

• E event density is the number of events that occur per
simulated second (ev/simsec). E depends on the model
only, and not where the model is executed. E is deter-
mined by the size, the detail level and also the nature
of the simulated system (e.g. cell-level ATM models
produce higher E values than call center simulations.)

• R relative speed measures the simulation time ad-
vancement per second (simsec/sec). R strongly de-
pends on both the model and on the software/hardware
environment where the model executes. Note that
R = P/E.

• L lookahead is measured in simulated seconds (sim-
sec). When simulating telecommunication networks
and using link delays as lookahead, L is typically in
the msimsec-µsimsec range.

• τ latency (sec) characterizes the parallel simulation
hardware. τ is the latency of sending a message from
one LP to another. τ can be determined using sim-
ple benchmark programs. The authors’ measurements
on a Linux cluster interconnected via a 100Mb Eth-
ernet switch using MPI yielded τ = 22µs which con-
forms to the measurements reported in (Ong and Far-
rell, 2000); specialized hardware such as Quadrics In-
terconnect (quadrics) can provide τ = 5µs or better.

In large simulation models, P, E and R usually stay rela-
tively constant (that is, display little fluctuations in time).
They are also intuitive and easy to measure. For example,
the OMNeT++ simulation tool displays these values on the
GUI while the simulation is running, see Figure 1.

Too Frequent Null Messages

If lookahead is too small compared to the mean simulation
time between events, several rounds of null messages will
be needed to advance simulation time over otherwise event-
free time periods. As an illustration, consider a queueing
network model executed in parallel. Let the processing time
of the queue servers be 0.1 seconds. We use the processing
time as lookahead, so EIT is increased in 0.1s steps. If jobs
arrive at the queues only every 3 seconds, then 30 rounds

Figure 1: Performance bar in OMNeT++ showing P, R and E

of null messages are necessary to advance simulation time
to the next event. This phenomenon is widely analyzed in
the literature, see (Nicol and Fujimoto, 1994) for example.
Each round of null messages takes at least τ time (null mes-
sages have to arrive), which can be painful especially on
cluster hardware.

In order to achieve good performance, the lookahead
needs to be significantly larger than the time between
events: L� 1/E. Rewriting this in a more convenient form:

LE � 1 (1)

The actual threshold for LE depends on the relative cost of
sending a null message and processing an event as well as τ
and P. It is also worth noting that the number of null mes-
sages sent out and thus the null message sending overhead
grows as the number of output neighbor LPs grow.

Note that L and E are properties of the model, which
means that some models will always perform poorly under
NMA, regardless of the software/hardware environment. A
remedy to this problem could be to use an alternative syn-
chronization method, e.g. Conditional Event Algorithm
(which relies on calculating global virtual time), as sug-
gested by Bagrodia in (Bagrodia and Takai, 2000).

LE is inversely proportional to the lookahead ratio
(Preiss and Loucks, 1990).

Too Much Blocking on EITs

Null messages must reach a target LP early enough so that
the target LP does not need to block on the EIT before the
null message arrives. In other words, an LP has to have
enough work (events to process) until the next null message
arrives.

We use a simple simulated scenario to examine and quan-
tify this criterion. We model two networks that are con-
nected by an 1000km fiber optic cable, with a propagation
delay of about 5ms (Figure 2). The two networks are exe-
cuted in separate LPs, using the Null Message Algorithm.
We use the cable delay as lookahead, that is, L = 5ms. We
run the simulation on a cluster computer that provides us
τ = 10µs latency. Also, assume the following ideal con-
ditions: idle link (no modeled traffic), lazy null message
sending, and virtual times proceed in sync in the two LPs.
Then, LPs will periodically exchange null messages with
each other (every L = 5ms simulation time; see Figure 3).
Null messages sent out from one LP take τ (real) time to
arrive. They have to arrive at the other LP before that LP
reaches the EIT received in previous null message, that is,
in less time than it takes the target LP to advance L simula-
tion time. This results in the following criterion:

τ <
L
R

(2)

Using R = P/E and rearranging the equation we get that

τP < LE (3)

That is, if (3) holds and the described ideal conditions are
present, LPs will never block on EITs. But what if condi-
tions are different?

Figure 2: The simulated scenario

If null message sending is not lazy, there will be more
frequent null messages, which further reduce the probabil-
ity of blocking. Actually, more frequent null messages help
“smooth out” fluctuations in latency and virtual time pro-
gression, at the cost of more messaging overhead.

If there is traffic on the link, it also means that more fre-
quent null messages (piggybacked on simulated packets)
are present, which reduces the possibility of blocking.

What if simulation times are not in sync? In real life,
simulation time does not pass completely evenly (R rela-
tive speed fluctuates in both LPs), and this causes simula-
tion times to be skewed. The NMA algorithm places an
upper bound equal to the lookahead on the skew, because
LPs have to block whenever an EIT has been reached. We
will show that in order to reduce the amount of blocking,
the inequality (3) has to hold “stronger” (that is, τP � LE).

If there are more partitions, inequality (3) should hold
for all ordered LP pairs. This is covered in greater detail in
the section entitled “Applying To Several LPs”.

Inequality (3) displays the following property: the left
hand side, τP, depends mainly on properties of the hard-
ware (and much less on the model) and the right hand side,
LE only depends on the model (and not at all on the hard-
ware). τP expresses how many events are processed dur-
ing τ time. Its value characterizes the hardware: a small
value indicates fast communication compared to process-
ing speed, in other words, shared-memory-type hardware,
while large values indicate strong processing power and
slower communication, that is, cluster-type hardware. The
actual boundary seems to be around τP = 1. LE shows
the model’s potential for efficient PDES under NMA. It
expresses “how many events the lookahead cover”. Small
values mean poor lookahead, and large values mean good
lookahead. The larger the value of LE, the more potential
the model has to perform well on cluster-type hardware.

���������	��
�

� ��� ������������
�

������� ��� "! � ���#! ��� �

!$�%�� ��&! � � �

'�()�

�+*

τ ,.-0/�132 46587�9�:<;0=

> 2 ?"?�@A4�B�7�4�C
�+*

>ED�F

GIHJF 5
GKHJF 5

L 1 GNM 4�O�@P7�O
9RQ�2 2 M 7�SS4UT+7

V�W&X Y%Z&[]\�^%W_)` a WbX ` ^EW
c)dbe ^<W d_)` a WbX ` ^EW

Figure 3: Periodic exchange of null messages in the simulated scenario

τP < LE only guarantees that there’s no blocking if sim-
ulation time passes completely evenly, that is, R = P/E rel-
ative speed is constant. In practice, there are fluctuations in
P and E, so τP = LE will lead to frequent blocking because
the LPs are too tightly coupled. τP < LE allows for fluctu-
ations in P and E to occur, reducing the chance of blocking
on EITs. Let us introduce λ coupling factor, the ratio of LE
and τP:

λ =
LE
τP

(4)

It follows from its definition that if λ < 1, frequent blocking
on EITs is guaranteed and one cannot expect good perfor-
mance from the simulation; if λ ≥ 1 but small, more or less
blocking will occur depending on how much P and E fluc-
tuate, and as experimental results show, this heavily affects
performance. If λ > 1 and large enough, then blocking on
EITs is no longer a major performance factor. Our exper-
imental results indicate that λ values below 10 should be
regarded as “small” and values above 100 as “large”, the
exact performance characteristics being dependent on the
simulation model.

The question of “when is lookahead big enough” can then
be answered: when λ is greater than a λ0 threshold chosen
in the range 10 . . . 100, that is:

L >
λ0τP

E
(5)

One can think of several intuitive interpretations of λ :
“how many times τ it takes to progress L simulation time,”
or “how big is lookahead L, in units of simulation time that
can be covered during τ time”.

Another interpretation can be derived from the skew of
the simulation times in the LPs. As one can deduce from
Figure 3, the simulation times can be skewed at most L−Rτ

if we want to avoid blocking. (Intuitively: if the null mes-
sage took zero time to arrive (τ = 0), simulation times could
be skewed by L amount, but this is decreased by the simu-
lation time that is covered during τ time.) If expressed in
terms of λ , the maximum skew is Rτ(λ −1). This explains
why λ is called coupling factor: λ = 1 means tight coupling
(because it forces zero skew and simulation times to pass in
sync in the two LPs, possibly at the cost of frequent block-
ing), and a large λ means loose coupling (allows for more
skew and therefore more fluctuations in P and E, without
heavily affecting performance).

Applying To Several LPs

We need to apply the criteria for all (ordered) pairs of LPs,
because the slowest LP pair determines simulation speed.
Note that when virtual time progresses slowly in an LP,
it also “pulls back” other LPs. Let Ei and Pi be the event
density and performance in LPi, and let Li, j and τi, j be the
lookahead and latency toward LPi from its LP j input neigh-
bor (Figure 4). Let us define λi, j as follows:

λi, j =
Li, jEi

τi, jPi
(6)

To achieve good performance, all Li, jEi (1) and λi, j (4) val-
ues have to be sufficiently high, thus we can define an effec-
tive coupling factor as

λ = min
i, j

λi, j (7)

NMA Scalability and Partitioning

How does NMA scale with the number of processors used?
We can expect Pi and τi, j values to stay relatively constant as

�����
��� �
	��

�����
�����	� � � ������

��� ��	��� � � � � �

���
���! τ � �"����

� #$ τ � � #

Figure 4: Multiple LPs

the number of LPs grows (n). Li, j lookahead might or might
not decrease as n grows, depending on the model topology.
Ei, however, will decrease. Events do not change as we
partition the model, so the event densities, Ei, have to sum
up to Eseq, the event density of the sequential execution.
Thus, for the event density in LPi with n LPs, En,i:

min
i

En,i ≤
Eseq

n
(8)

Consequently, the effective coupling factor for n LPs, λn,
will also diminish as n grows:

λn ≤
λ0

n
(9)

where λ0 can be derived from the two-processor simula-
tion as λ0 = 2λn=2. As λn falls below a critical value, per-
formance degrades. The intuitive explanation is that with
heavy partitioning, some processors might not get enough
work to do between receiving null messages and thus they
are often forced to block on EITs.

A practical use of (9) is to assess the available potential
for parallelism in the model, that is, the maximum number
of LPs where NMA can still be expected to produce good
results.

Partitioning algorithms aware of coupling factor λ should
consider only partitions where all λi, j values are above a
threshold.

EXPERIMENTAL VERIFICATION OF THE
CRITERION

Experiments have been performed to verify the criterion.
We have used the closed queuing network (CQN) model
described in (Bagrodia and Takai, 2000) (Figure 5). The
model consists of N tandem queues where each tandem con-
sists of a switch and k single-server queues with exponential
service times. The output of the last queue is looped back
to the switch. Each switch randomly chooses the first queue
of one of the tandems as its destination, using uniform dis-
tribution. The queues and switches are connected with links
that have nonzero propagation delays. At the beginning of
the simulation, a fixed number of jobs are injected in the
system; no jobs are created or destroyed during simulation.

%

%

%

%

%

%

Figure 5: The Closed Queueing Network (CQN) model,
which consists of N tandem queues where each tandem con-
sists of a switch and k single-server queues

We used a model consisting of N = 16 tandems. We
performed experiments with 2-way and 4-way partitioning
(that is, with 8 and 4 tandem queues per LP). The propaga-
tion delay between switches and first queues was used as the
lookahead L, and we conducted a series of experiments with
various lookahead values. The other variable parameter in
the model is k, the number of queues per tandem, which we
used to control the event density, E. Initially we inserted
2 jobs in each queue, propagation delays between queues
were set to 1, and we used an exponential distribution with
a mean of 10 as the queue service time.

The simulation environment was an in-house develop-
ment version of OMNeT++ framework (Varga, 2001) (Şek-
ercioğlu et al., 2003). The hardware environment was a
Linux cluster (kernel 2.4.9) of dual 1 Ghz Pentium III PCs,
interconnected using a 100Mb Ethernet switch. The com-
munication library was LAM-MPI (lam-mpi). The MPI la-
tency τ was measured to be 22µs. Sequential simulation
of the CQN model achieved Pseq = 120,000 ev/sec perfor-
mance, a value that was independent of k.

We performed the simulation under NMA and (for
comparison) under ISP. We recorded the average per-
LP Pi performances, and also the Ei event densities so
that we could calculate λ . We performed experiments
with the following k = 1,2,5,10,20,50,100,200 and L =
1,2,5,10,20,50,100,500 values on 2 and 4 processors.

An excerpt of the results is shown in Table 1. SISP, SNMA
are the speedups achieved under ISP and NMA, respectively
(measured as P/Pseq); NMA/ISP is the ratio of the NMA
and ISP speedups. Graph 6 shows NMA/ISP versus λ . λ >
50 values all yielded NMA/ISP > 0.78 and are not shown
in the graph. λ > 200 yielded NMA/ISP > 0.95. We should
note that NMA/ISP values slightly bigger than 1 have been
observed for very large λ values.

The performance shows strong correlation to λ . Small λ
values (under 5 or so) result in poor performance, and large
values (over 100) result in a performance near ISP (values
larger than 100 do not have significant impact any more).
One can observe that the threshold for λ is somewhere in
the range 10 . . . 50.

LPs k L Ei λ SISP SNMA NMA/ISP

2 5 1 5.81 2.20 0.94 0.41 0.43
2 5 2 5.80 4.40 0.99 0.62 0.62
2 5 5 5.76 10.91 1.01 0.92 0.92
2 20 1 21.66 8.20 1.34 0.84 0.63
2 20 2 21.62 16.38 1.40 1.10 0.79
2 20 5 21.59 40.90 1.41 1.33 0.94
4 5 1 2.90 1.10 2.03 0.21 0.10
4 5 5 2.88 5.46 2.01 0.77 0.38
4 5 20 2.78 21.08 2.12 1.67 0.78
4 5 50 2.57 48.72 2.16 2.08 0.97
4 20 1 10.83 4.10 2.94 0.68 0.23
4 20 2 10.81 8.19 2.90 1.10 0.38
4 20 5 10.80 20.46 2.92 1.84 0.63
4 20 10 10.77 40.79 2.99 2.35 0.79

Table 1: Experimental results on 2- and 4-processor configurations with various k and L values

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.00 10.00 20.00 30.00 40.00 50.00

Lambda

E
ff

ic
ie

n
cy

Figure 6: NMA/ISP performance ratio vs λ

APPLYING THE CRITERION IN PRAC-
TICE

The criterion can easily be applied in practice by the sim-
ulation designer to find out if a model has the potential for
parallel execution with NMA. The P and Eseq values can be
collected from a sequential run of the model, with the help
of the simulation tool. For example, OMNeT++ displays
P and E in both its command-line and GUI user interface.
τ can be measured by simple test programs, or its approxi-
mate value can be guessed from the hardware and software
components (as mentioned earlier, a commonly available
Linux cluster with MPI yielded τ = 22µs in our measure-
ments). Lookaheads, L, can be determined from the model
itself.

With L, Eseq, τ and P present, it is then possible to assess
LE and λ for different numbers of LPs (n), using the E =
Eseq/n approximation. If satisfactory LE and λ values are
present, the model could be deemed to have good potential
for NMA.

An example: assume that we intend to run Internet sim-
ulations in parallel on the above mentioned Linux cluster

(τ = 22µs). Experiments show that IP simulations produce
around P = 80,000 ev/sec on a single CPU. We use link de-
lays as lookahead, typically around L = 1ms. What is the
smallest network that has a chance to produce good speedup
on n = 4 CPUs (we would like at least λ = 20)?

Using Equation (4) and inequality (8)

Eseq ≥
nλτP

L
= 140,800 ev/simsec

Here, LEseq/n = 35.20, thus inequality (1) also holds. Fur-
ther simulation experiments can cast light on what event
densities are expected to be generated for host, router mod-
els etc, under a given simulated network traffic. It is thus
possible to deduce the size of the network.

CONCLUSION

We have derived a quantitative criterion to predict in which
settings the null message algorithm (NMA) has a potential
to perform well. The criterion accounts for the cases when
the protocol would send too many null messages or it would
block too frequently, and it is based on the newly introduced
concept of the coupling factor. We have experimentally ver-
ified the criterion, using the performance ratio to the Ideal
Simulation Protocol as a benchmark. Although the criterion
was introduced in the context of network simulation and
cluster computing, it is applicable to any simulation model
and shared memory architectures as well.

The criterion provides a quick and practical way to pre-
dict whether a simulation model has potential to perform
well under NMA in a given simulation environment, and
may also help to determine the maximum degree of parti-
tioning where the model can still be expected to produce
good performance under NMA.

It is left to further studies to experimentally verify the
criterion on different types of models and on a larger num-
ber of processors. Further studies are needed to analyti-
cally explain why the coupling factor has to be larger than

10 . . .100. For this, probably stochastic tools and a quantifi-
cation of fluctuations in performance P and event density E
values will be needed.

Acknowledgment

Authors would like to express their gratitude to Brett Pent-
land for his help on improving the text.

References

R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng,
J. Martin, and H. Y. Song. Parsec: A parallel simula-
tion environment for complex systems. IEEE Computer,
pages 77–85, October 1998.

R. L. Bagrodia and M. Takai. Performance evaluation
of conservative algorithms in parallel simulation lan-
guages. IEEE Transactions on Parallel and Distributed
Systems, 11(4):395–414, 2000. URL citeseer.nj.nec.com/
bagrodia98performance.html.

M. Chandy and J. Misra. Distributed simulation: A case
study in design and verication of distributed programs.
IEEE Transactions on Software Engineering SE-5, (5):
440–452, 1979. URL http://citeseer.nj.nec.com/context/
58222/0.

Y. A. Şekercioğlu, A. Varga, and G. K. Egan. Parallel sim-
ulation made easy with OMNeT++. In Proceedings of
European Simulation Symposium (ESS2003), Delft, The
Netherlands, October 2003. Society for Computer Simu-
lation.

R. M. Fujimoto. Performance measurements of distributed
simulation strategies. Trans. of the SCS, 6(2):89–132, apr
1989.

lam-mpi. LAM-MPI home page. URL http://www.
lam-mpi.org/.

J. Lemeire and E. Dirkx. Performance factors in parallel
discrete event simulation. In Proc. of the Int. Multiconfer-
ence on Simulation and Modeling (ESM 2001), Prague,
June, 2001. Society for Computer Simulation, 2001.

Y.B. Lin and E.D. Lazowska. Exploiting lookahead in
parallel simulation. IEEE Transactions on Parallel and
Distributed Systems, (4):457–469, oct 1990. URL http:
//citeseer.nj.nec.com/context/58222/0.

R. A. Meyer and R. Bagrodia. Path lookahead: a data flow
view of PDES models. In Proceedings of the 13th Work-
shop on Parallel and Distributed Simulation (PADS’99),
pages 12-9, 1999, 1999.

D. M. Nicol and R. M. Fujimoto. Parallel simulation today.
Annals of Operations Research, (53):249–285, 1994.
URL http://citeseer.nj.nec.com/nicol94parallel.html.

H. Ong and P. A. Farrell. Performance comparison of
LAM/MPI, MPICH and MVICH on a Linux cluster con-
nected by a Gigabit Ethernet network. In Proceedings of
the 4th Annual Linux Showcase & Conference, Atlanta,
October 10-14, 2000. The USENIX Association, 2000.

Atlanta PADS Research Group, Georgia Institute of Tech-
nology. PDNS - Parallel/Distributed NS home page.
URL http://www.cc.gatech.edu/computing/compass/
pdns.

C. D. Pham. High performance clusters: A promising en-
vironment for parallel discrete event simulation. In Pro-
ceedings of the PDPTA’99, June 28-July 1, 1999, Las Ve-
gas, USA, 1999.

B. R. Preiss and W. M. Loucks. The impact of looka-
head on the performance of conservative distributed
simulation. In Proc. 1990 European Multiconference–
Simulation Methodologies, Languages and Architec-
tures, pages 204-209, Nuremberg, FRG, June 1990. So-
ciety for Computer Simulation, 1990.

quadrics. Quadrics home page. URL http://www.quadrics.
com/.

H. M. Soliman, A. S. Elmaghraby, and M. A. El-Sharkawy.
Parallel and distributed simulation: An overview. In
Proceedings of the IEEE Symposium on Computers and
Communications (ISCC’95), June 27-29, 1995, Alexan-
dria, Egypt, 1995.

ssfnet. SSFNet home page. URL http://www.ssfnet.org.

A. Varga. The OMNeT++ discrete event simulation sys-
tem. In Proceedings of the European Simulation Multi-
conference (ESM’2001). June 6-9, 2001. Prague, Czech
Republic, 2001.

J. J. Wand and M. Abrams. The impact of looka-
head on conservative simulation. Technical Report
ncstrl.vatech_cs//TR-95-03, Computer Science, Virginia
Polytechnic Institute and State University, 1995. URL
http://eprints.cs.vt.edu:8000/archive/00000418/.

J. Xu and M. J. Chung. Predicting the performance of syn-
chronous discrete event simulation systems. In Proceed-
ings of ACM/IEEE International Conference on Com-
puter Aided Design, San Jose 2001, pp. 18-12., 2001.

AUTHOR BIOGRAPHIES

András Varga received his M.Sc. in computer science with
honors from the Technical University of Budapest, Hungary
in 1994. He worked for several years as software archi-
tect for Encorus (formerly Brokat Technologies), which has
provided distributed application server technologies for fi-
nancial institutions in Europe and Asia, and now focusing
on Internet and mobile payment solutions.

He is the author of the OMNeT++ open-source network
simulation tool currently widely used in academic and in-
dustrial settings, and founder of Omnest Global, Inc. which
provides commercial licenses and services for OMNeT++
worldwide. He is currently working towards PhD, his re-
search topic being large-scale simulation of communication
networks. Between February and September 2003 he vis-
ited CTIE at Monash University (Melbourne, Australia) to
participate in the parallel simulation research project.

Y. Ahmet Şekercioğlu is a researcher at the Centre for
Telecommunications and Information Engineering (CTIE)
and a Senior Lecturer at Electrical and Computer Sys-
tems Engineering Department of Monash University, Mel-
bourne, Australia. He also holds the position of Pro-
gram Leader for the Applications Program of Australian
Telecommunications Cooperative Research Centre (ATcrc,
http://www.atcrc.com). He completed his PhD degree at
Swinburne University of Technology, Melbourne, Australia
(2000), MSc (1985) and BSc (1982) degrees at Middle East
Technical University, Ankara, Turkey (all in Electrical En-
gineering). He has lectured at Swinburne University of
Technology for 8 years, and has had numerous positions
as a research engineer in private industry.

His recent work focuses on development of tools for sim-
ulation of large-scale telecommunication networks. He is
also interested in application of intelligent control tech-
niques for multiservice networks as complex, distributed
systems.

His e-mail address is : �����������
	������������������ and his
Web-page can be found at http://titania.ctie.monash.edu.au.

Gregory K. Egan’s principal research interests are
the design, programming and the application of high-
performance parallel distributed computer architectures.

He is currently Professor of Telecommunications and In-
formation Engineering, Director of the Centre for Telecom-
munications and Information Engineering and Head of the
Department of Electrical and Computer Systems Engineer-
ing at Monash University in Australia.

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

