

AN ACTOR-BASED SIMULATION FOR STUDYING UAV COORDINATION

Myeong-Wuk Jang, Smitha Reddy, Predrag Tosic, Liping Chen, Gul Agha
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

E-mail: { mjang, sreddy1, p-tosic, lchen2, agha } @cs.uiuc.edu

KEYWORDS
Actor, Simulation, Unmanned Aerial Vehicle (UAV),
Coordination.

ABSTRACT

The effectiveness of Unmanned Aerial Vehicles
(UAVs) is being increased to reduce the cost and risk
of a mission [Doherty et al. 2000]. Since the advent of
small sized but high performance UAVs, the use of a
group of UAVs for performing a joint mission is of
major interest. However, the development of a UAV is
expensive, and a small error in automatic control
results in a crash. Therefore, it is useful to develop and
verify the coordination behavior of UAVs through
software simulation prior to real testing. We describe
how an actor-based simulation platform supports
distributed simulators, and present three cooperation
strategies: self-interested UAVs, sharing-based
cooperation, and team-based coordination. Our
experimental results show how communication among
UAVs improves the overall performance of a
collection of UAVs on a joint mission.

1. INTRODUCTION

The effectiveness of Unmanned Aerial Vehicles
(UAVs) is being increased to reduce the cost and risk
of a mission [Doherty et al. 2000]. Some military
UAVs, such as the Predator and the Global Hawk,
were already used during the wars in Afghanistan and
Iraq. Decreasing size of the UAVs and increased
demand for more intelligent and autonomous behavior
of UAVs are paving the way for consideration of a
group of UAVs performing a joint mission. While the
cost of UAVs is lower than that of real planes, the
development cost of a UAV is still very high, and a
small error in automatic control may result in a crash.
Therefore, when we consider a large number of UAVs
working together, it is necessary to design and verify
the behavior of UAVs through software simulation
prior to real testing.

Many simulators have been developed as single
process simulators. However, a single process
simulator has several limitations. First, the
performance of a simulation depends on the
computational power of one computer. Second, a
single process simulator has an extensibility issue
when a special component requires its own specific
process. For example, if we want to simulate the

coordination behavior of many virtual UAVs with a
few real UAVs, each real UAV is working as an
independent process. In this kind of simulation, a
single process simulator cannot work well. Therefore,
a concurrent object-based distributed simulator
provides a better simulation environment.

It is commonplace to say that human beings are
disposed to cooperate. Biology and ethology show that
“kin-altruism” and “reciprocal-altruism” can ground
cooperative behavior in animals, such as wolves
surrounding prey, termites nest building, and birds
flocking. Drawing a parallel, intelligent UAVs that
cooperate with one another are of high interest for
their ability to search, detect, identify, and handle
targets together. The old age tenets of pre-planning
and central control have to be reexamined, giving way
to the idea of coordinated execution. In this paper, we
describe and analyze three different strategies to
coordinate tasks among UAVs in a dynamic
environment to achieve their goals.

The outline of this paper is as follows. Section 2
sketches a simulation scenario and explains basic
concepts about the actor model and the metrics in our
simulation. Section 3 describes architecture for our
simulation, and three cooperation strategies for a joint
mission are presented in Section 4. Section 5 explains
our implementation and experimental results. Then, in
Section 6 and 7, we discuss related work and our
future work. Finally, we conclude this paper with a
summary of our simulation framework and our major
contributions.

2. TERMINOLOGY

2.1 UAV Simulation Scenario

Prior to embarking on the architecture of our UAV
simulator, we present a simple scenario in order to
explain the meaning of basic terms. The application of
our simulation is a UAV surveillance mission. For
example, 50 UAVs might be launched into a certain
area by Ground Control System (GCS) to detect
targets in the area. For example, targets may be
civilians to be rescued. In the simulation, UAVs have
the autonomy to perform their mission without
interaction with the GCS, except during the initial
stage when message exchange is necessary to get each
UAV started by sending them some default air routes.
When UAVs are launched, the UAVs do not have any
information about locations of targets. However, each

UAV is equipped with some sensors which can detect
objects within the certain range. We assume that all
UAVs start from the same location, called an air base.
Controlling the sequence of takeoffs and landings of
UAVs is managed by the control center, called Air
Base System (ABS). The main task of a UAV is to
detect locations of targets in a mission area and
investigate them. Therefore, even though they
navigate according to the given air routes, they can
change their trajectories to handle targets once they
detect those targets. In addition, when UAVs
encounter obstacles, such as tall towers or airplanes,
they should change their air routes to avoid a collision.
Therefore, in our UAV simulation, there are five types
of important components: Ground Control System
(GCS), Air Base System (ABS), Unmanned Aerial
Vehicles (UAVs), targets, and obstacles.

2.2 Actor

Our UAV simulator is based on the Actor system, a
concurrent object-based distributed system, and hence,
we use the actor model to describe each component in
the simulation. An actor is a self-contained active
object which has its own control thread and
communicates with other actors through asynchronous
message passing [Agha 1986; Agha et al. 1997]. In
addition, an actor can create other actors, just as an
object can create other objects. In our UAV simulator,
each component, such as a UAV or a target, is
implemented as an actor. Since these components in
real situations operate concurrently and communicate
with one another, their behavior can be captured very
well by the actor model. Each software component in
the simulation progresses its state independently of the
progress of others in response to the environment
information gathered either through its own sensor or
by communicating with others.

2.3 Attractive Force Value and Utility Value

In our UAV simulation, each target has its own value.
This value could be interpreted in several different
ways. The value might correspond to the number of
soldiers or the importance of a building. Also, we can
consider this value as the time required to investigate a
target by a UAV. For the simplicity of our simulation,
we use a single numeric value instead of symbolic
information or time information about a target.

In our simulation, we make the following
assumptions. A UAV handles only one target at a time,
although the UAV holds and manages information
about several targets. In the advent of multiple targets
to be handled, the UAV should select one of them. For
this purpose, a UAV uses the attractiveness function to
decide on a target. The attractiveness function maps
the value of a target to the attractive force value,
which represents a UAV’s preference. This function
depends on the value of the target and the distance
between itself and the UAV, and is used to select the
best target as follows:













−
Π

=Θ
)()(

)(
maxarg)(

ttx
t

t
ji

j

ji ψ

where)(tjΠ denotes the value of target j at time t,

)(txi is the location of UAV i at time t, and)(tjψ is
the location of target j at time t. If target j is stationary,

)(tjψ is always the same regardless of time. The
value between braces is called the attractive force
value of target j, and)(tiΘ returns the index of the
target that has the maximum attractive force value to
UAV i at time t.

As a UAV approaches a target, the UAV starts
consuming the value of the target once the UAV is
within a certain distance of the target. We call the
value consumed by the UAV the utility value. The
utility value function and the target value function of
the target i at time step t+1 are defined as follows:

)1()0()1(+Π−Π=+ titU ii

{ }0),()(max)1(tndtt iii ⋅−Π=+Π

where)(tUi means the utility value of the target i at
time t, d is a discount factor, and)(tni is the number
of UAVs which are near to the target i at time t.
Therefore, in our simulation, when several UAVs are
within the range of a target, the value of the target is
consumed more quickly.

After a UAV reaches a target, it will fly around
the target until the whole value of the target is
consumed, either by the UAV alone or in conjunction
with a group of UAVs. In our UAV simulation, one
purpose of collective behavior of UAVs is to
maximize the accumulated utility value within as short
a time as possible. Here, the accumulated utility value
means the whole value of targets consumed by all the
UAVs.

3. SIMULATION ARCHITECTURE

Our distributed simulation is comprised of three
layers: user interface, UAV simulator, and actor-based
distributed platform (Figure 1). The user interface
layer consists of two programs: Configuration
Interface Program and Simulation Viewer.
Configuration Interface Program provides an easy
means of defining important attributes for the
simulation. Simulation Viewer is a tool to check and
verify the simulation results. All task oriented
components, such as UAVs and targets, and simulation
oriented components, such as Simulation Control
Manager (SCM) and Active Broker (AB), are
implemented as actors in the UAV simulator layer,
which will be further explained in section 3.2.2. Each
actor has its own thread to progress its state. The
thread execution and communication of actors are

controlled by the Actor Foundry, an actor-based
distributed platform.

User Interface
Configuration Interface

– set up parameters
Simulation Viewer

– show the result

UAV Simulator
Task oriented components

– UAVs, targets, obstacles, etc
Simulation oriented components

– SCM, AB, etc

Actor-based Distributed Platform
Actor Foundry

– actor thread control
– communication among actors
– actor migration

Figure 1: Three-layered Architecture for Distributed

Simulation

The actor-based distributed platform is a
middleware to support several distributed applications
and is not tailor made for a specific simulation, such
as a UAV simulation. The UAV simulator defines
specific behaviors of UAVs, but does not include all
the parameters to test and verify a behavior. These
parameters are defined in user interface programs by a
user and used in the UAV simulator. The functions of
each layer are explained in detail below.

3.1 Actor-based Distributed Platform

The Actor Foundry is implemented in the Java
programming language, and supports actor execution,
communication between actors, and actor migration
[Astlery 1999; Clausen 1998].

In the Actor Foundry, an actor is created by
another actor or by a user. When an actor is created,
the actor name of the new actor is returned. This name
would be used to refer to the receiver actor in message
passing or deliver the reference of another actor to the
receiver actor. The actor name is unique in the actor
world. Therefore, even though an actor migrates from
one host to another, the name is always transparent to
other actors, and hence, other actors can continuously
use the same name to refer to the given actor
irrespective of that actor’s current location, thereby
providing a means for location transparency.

An actor in the Actor Foundry is running as a
Java thread, and an actor communicates with other
actors through asynchronous message passing. This is
the main difference between the Actor Foundry and
other object-based distributed platforms, such as
CORBA and DCOM [Grimes 1997; OMG 2002]. In
other object-based distributed platforms, one thread
control is assumed: when an object is called by
another object, the caller object is blocked until the
called object returns the thread control. In the Actor
Foundry, since every actor has its own control thread

to perform its operation and communicates with others
through the asynchronous communication, the
execution of an actor does not depend on those of
others. Due to these features, we can easily use the
power of distributed systems. Simulation components
implemented as actors run on different computers
independently, and they can communicate with others
through the unique actor name, even though the
distributed platform migrates some components from
one host to another.

When distributed components interact with each
other through asynchronous communication,
analyzing the delivery sequence of communication
messages is burdensome because asynchronous
communication does not guarantee the message
delivery order requirements, such as FIFO order,
causal order, or total order [Hadzilacos and Toueg
1993]. Our distributed platform makes a log for
message passing among actors, so that users can easily
analyze the delivery sequence of messages.

3.2 UAV Simulator

All simulation components in our UAV Simulator can
be classified into two categories: task oriented
components and simulation oriented components
(Figure 2). Task oriented components simulate objects
in real situations. For example, a UAV component
maps to a UAV object in a real situation while a target
component maps to a target object. For the purpose of
simulation, we need some virtual components, such as
Simulation Control Manager and Active Broker. The
following sub-sections explain these two categories of
components in detail.

Figure 2: Simulation Components in UAV Simulator

Task Oriented Components

Ground Control
System

Air Base
System

Unmanned
Aerial Vehicle

Unmanned
Aerial Vehicle

Unmanned
Aerial Vehicle

Static
Target

Static
Target

Static
Target

Mobile
Target

Mobile
Target

Mobile
Target

Static
Obstacle

Static
Obstacle

Static
Obstacle

Mobile
Obstacle

Mobile
Obstacle

Mobile
Obstacle

Simulation Oriented Components

Simulation
Control
Manager

Sensor
Simulator

Active
Broker

3.2.1 Task Oriented Components

Task oriented components in our UAV simulator
consist of five types: Ground Control System (GCS),
Air Base System (ABS), Unmanned Aerial Vehicles
(UAVs), obstacles, and targets. GCS is a central
manager of UAVs and is aware of the mission area so
as to indicate each UAV its air route in the area.
However, GCS may not communicate continuously
with UAVs to decide behavior of the UAVs at each
time step because UAVs are supposed to perform their
mission autonomously. ABS represents a control center
of an air base and controls the sequence of take-offs
and landings of UAVs. UAVs perform a given mission
autonomously within certain restrictions, such as their
kinematics and communication capability. Obstacles
represent objects in which UAVs are not interested and
with which a collision can happen. According to
whether an obstacle can move or not, they are
classified into two classes: a mobile obstacle, such as
an airplane, and a static obstacle, such as a tall tower
or a building. Targets represent objects of interest for
the UAVs, such as, civilians to be rescued. According
to its mobility characteristics, there are mobile targets
and static targets.

3.2.2 Simulation Oriented Components

3.2.2.1 Simulation Control Manager.
Each component manages its virtual time because
each actor has its own control thread. However, this
situation can cause inconsistency in virtual times of
components. To maintain consistency between virtual
times, Simulation Control Manager (SCM) manages
local virtual times of the simulation components.
When every component starts its execution, the initial
value of each local virtual time is set to 0. After every
component starts, SCM broadcasts a virtual time clock
message to the other components. When a component
receives the message, the component increases its
local time and performs a small portion of its task that
should be completed during the predefined time slice
unit. For example, when a UAV receives the message,
it updates its location and direction vector, and also
checks whether or not new objects, such as other
UAVs, targets, or obstacles, are detected. If a new
neighboring UAV is detected, the UAV might
exchange some information with the new neighboring
UAV. After a component finishes its computation, it
sends a reply message to SCM. When SCM receives
reply messages from all the other components, SCM
increases its virtual time, and rebroadcasts another
virtual time clock message.

3.2.2.2 Active Broker
In order for a UAV to perform a group mission, the
UAV needs to communicate with its neighboring
UAVs through local broadcasting. Active Broker
simulates a local broadcasting mechanism. In general,
the brokering service supports attribute-based

communication. For example, if every UAV registers
information about its current flying area with its actor
name on a shared space, then when a UAV requests a
broker for a message passing with a template that
describes a certain area, the broker delivers the
message to other UAVs which are in the area.
However, this approach is not very accurate for
finding the neighboring UAVs. Therefore, we have
extended the function of the brokering service. In the
active brokering service, every UAV registers
information about its current location with its actor
name on the shared space, and a UAV sends a special
object instead of the template to request a message
delivery to Active Broker. The object includes a
specific method to be called by Active Broker. The
method computes the distance between the location of
the sender UAV and other UAVs and selects some
which are within the local communication range.
When the method returns actor names of neighboring
UAVs, Active Broker delivers to them the message
received from the sender UAV.

3.2.2.3 Sensor Simulator
Although each real UAV is supposed to be equipped
with its own radar sensor, the radar sensors of all
UAVs is simulated by a single simulation oriented
component, Sensor Simulator. In the simulation,
UAVs, targets, and obstacles register their current
locations on a shared space every second in virtual
time. Sensor Simulator periodically computes the
distance between any two objects. If some components
are within the sensor range of a UAV, Sensor
Simulator reports information about these components
to the UAV. Each UAV regards this information as its
sensor input.

3.2.3 UAV Architecture

The most important simulation component is a UAV
component. Therefore, we explain the architecture and
the main behavior of a UAV in this subsection. A UAV
is comprised of four modules: the physical process
module, the trajectory planning module, the
cooperative module, and the global control module
(Figure 3).

Figure 3: The Architecture of the Unmanned Aerial
Vehicle Actor

physical process module

trajectory
planning
module

target
handling

obstacle
handling

cooperative
module

global control module

sensor

UAV

GCS

UAV

global
waypoints

local waypoints

next waypoints request

local information, next waypoint request

When a UAV starts its mission, it does not have
any information about its air route or the mission area.
In our simulation, an air route is defined as a set of
waypoints that need to be traversed by the UAV.
Therefore, the first task of a UAV is to request the
waypoints from GCS. The global control module of a
UAV takes charge in communicating with GCS and
managing the waypoints received. We call these
waypoints global waypoints. When a UAV detects
targets or/and obstacles, this information is delivered
to the trajectory planning module from Sensor
Simulator. The trajectory planning module handles
them according to the predefined rules. For example,
when a UAV detects several targets, it selects one
target which has the best attractive force value, and
then modifies its air route to reach the target. This
function is performed by adding a waypoint to the list
of UAV’s current waypoints. The set of waypoints
used inclusive of the additional waypoints are called
local waypoints. The cooperative module is used when
several UAVs want to handle a set of targets. To
decide which UAV handles which target, the UAVs
communicate with each other through the cooperative
module. The kinematics of a UAV is implemented in
the physical process module. Therefore, whenever this
module receives a virtual time clock message, the
physical process module computes the next location
and the next direction of the UAV. When a UAV
reaches the current waypoint, this module starts a turn
toward the next waypoint according to the predefined
kinematics.

3.3 User Interface

If we have to modify the UAV simulator whenever we
execute it with different parameters, it is quite
burdensome. Besides, modification at the code level
requires comprehension making it hard for novice
users to modify the code. In our architecture of UAV
simulation, we separate the parameter modification
part from the UAV simulator code as the user interface
layer. Moreover, we separate the simulation checking
part from simulator code. Therefore, the user interface
layer consists of two programs: Configuration
Interface Program and Simulation Viewer.

3.3.1 Configuration Interface Program

For the convenience of novice users, we have
separated the configuration for UAV simulation
parameters from the simulator code as a configuration
file. This file can be modified by the Configuration
Interface Program (Figure 4). Therefore, although a
user does not look at and understand the source code
for UAV simulation, they can change important
parameters of simulation and run it without
recompiling the source code. With this program a user
can set up the number of UAVs, the size of mission
area, the attributes of targets and obstacles, maximum
simulation time, and the size of simulation time slice
unit.

Figure 4: Configuration Interface Program

3.3.2 Simulation Viewer

Because of the characteristics of large scale
simulations whose durations may sometimes be so
long that we cannot monitor the simulation results
continuously, we have separated the simulation
checking from the simulation execution. Therefore, we
look at and check the simulation results through
Simulation Viewer (Figure 5). Another advantage of
this approach is that the simulation results can be
viewed back and forth with respect to the simulation
virtual time.

While our UAV simulator is running according to
the given parameters, the simulator generates
simulation results on data files. The data files contain
the locations and directions of UAVs, targets, and
obstacles at every simulation virtual time step. The
Simulation Viewer is used to check and verify the
simulation results.

Figure 5: Simulation Viewer

4. COOPERATION AND COORDINATION
AMONG UAVS

Cooperation among the UAVs is essential in directing
the adjustment of policies in the globally most
beneficial direction. In addition to cooperative
dissemination of information, coordination of actions
in larger teams is essential. With elements of
uncertainty existing in the environment, coordination
among UAVs has to be adaptive. The UAVs need to
dynamically allocate responsibilities for different
subtasks depending on the changing circumstances of
the overall situation. For example, if additional targets
are detected during a group mission, a team of UAVs
needs to be able to handle them either by recruiting
new member UAVs or changing the previous
assignment of targets. In our UAV simulation, we use
three strategies: the self-interested UAV strategy, the
sharing-based cooperation strategy, and the team-
based coordination strategy.

4.1 Self-interested UAVs

In the self-interested UAV strategy, a UAV senses a
target and approaches it with the intention of
consuming its entire value. When another UAV
detects the same target, it also proceeds to consume
the value of the target, irrespectively of what other
UAVs do. Incessant polling of the target value till such
time it is consumed completely serves as a means of
interaction among the UAVs. It is not unusual to have
more than one UAV concentrated on a target resulting
in quicker consumption of its value, but also possibly
in duplication of service.

4.2 Sharing-based Cooperation

In this strategy, once a UAV has discovered and
located a target, it broadcasts this information so that
other UAVs could direct their attention to the
remaining targets. Reception of such information will
result in the UAVs purging the targets that were
advertised. This approach allows for a larger set of
targets to be visited in a given time interval and is thus
expected to be faster in accomplishing the mission
goal. Exchange of information between UAVs
referring to the same target will result in a UAV with a
lower identification number to determine the UAV that
would be responsible for this target based on
parameters such as the distance from the target.

4.3 Team-based Coordination

In the team-based coordination strategy, certain UAV
takes on the mantle of the leader of its team and
dictates course of action to the other UAVs about the
targets they need to visit. A team is dynamically
formed and changed according to the set of targets
detected; i.e. when a UAV detects more than one target,
the UAV tries to handle the targets together with its
neighboring UAVs. At this time, the main concern is

how to select an optimum UAV and decide the number
of UAVs required to accomplish a task, when there are
a sufficient number of neighboring UAVs. As the basic
coordination protocol, we use the Contract Net
protocol [Smith 1980; Smith and Davis 1981]. The
UAV initiating the group mission works as the group
leader UAV, and the other participant UAVs are called
member UAVs. When a member UAV detects another
target, the UAV delivers information about the new
target to the leader UAV, and the leader UAV will add
the target to the set of targets to be handled. The leader
UAV considers the distance between a target detected
and neighboring UAVs to assign the target. When a
member UAV consumes the entire value of a target the
UAV secedes from its group.

5. EXPERIMENTAL RESULT

We have developed the UAV simulator and two
interface programs in Java programming language.
Our UAV simulator is running on the Actor Foundry,
but interface programs do not require the Actor
Foundry. In order to simulate the flying and turning
behavior of UAVs, we use the basic kinematics model
of airplanes, but we abstract away the detailed
dynamics and kinetics of aircraft.

For the UAV simulation, the size of the simulation
area is set to 1,000,000 × 800,000 × 8,000 cubic feet
(length × width × altitude), size of the mission area to
400,000 × 500,000 × 8,000 cubic feet, the radius of
local broadcast communication of a UAV to 50,000
feet, and the radius of radar sensor to 25,000 feet.
There are 50 targets in the mission area, and they are
normally distributed. Half of the targets are static and
the others are dynamic targets. When a UAV is within
1,000 feet from a target, the UAV consumes the value
of the target. The initial value of each target is 100,
and the discount factor d in the target value function is
5 per second.

To investigate how different cooperation
strategies influence the performance of a joint mission,
we use Average Service Cost (ASC) defined as
follows:

n

MNTNT
ASC

n

i
i∑ −

=
)(

where n is the number of UAVs, NTi means navigation
time of UAV i, MNT (Minimum Navigation Time)
means average navigation time of all UAVs required
for a mission when there are no targets.

Figure 6 shows Average Service Cost for three
different cooperation strategies. When the number of
UAVs is increased, ASC is decreased in every case.
However, the sharing-based cooperation strategy and
the team-based coordination strategy are better than
the self-contained UAV strategy. From this result, we
conclude that communication of UAVs is useful to
handle targets, even though UAVs in the self-

contained UAV strategy consumes quickly the value of
a target when they handle the target together. Another
interesting result is the performance of the team-based
coordination strategy is similar to that of the sharing-
based cooperation strategy, even though the algorithm
of the sharing-based cooperation strategy is much
simpler. The overall ASC of the team-based
coordination strategy is 3 or 5 seconds faster than that
of the sharing-based cooperation strategy. When ni(t)
in the target value function is not used, the
performances of the sharing-based cooperation
strategy and the team-based coordination strategy are
not changed very much while that of the self-
interested UAV strategy is decreased (Figure 7).

0

50

100

150

200

250

300

350

400

20 25 30 35 40 45 50
Number of UAVs

A
SC

Self- interested
UAVs
Sharing- based
Cooperation
Team- based
Coordination

Figure 6: Average Service Cost (ASC) for three
different coordination strategies.

0

50

100

150

200

250

300

350

400

20 25 30 35 40 45 50
Number of UAVs

A
S

C

Self- interested
UAVs
Sharing- based
Cooperation
Team- based
Coordination

Figure 7: Average Service Cost when ni(t) is not used.

6. RELATED WORK

Johnson and Mishra present a flight simulation tool for
GTMax (Georgia Tech R-Max VTOL UAV) [Johnson
and Mishra 2002]. Barney Pell and his colleagues
describe the NMRA (New Millennium Remote Agent),
architecture for a UAV. The NMRA integrates real-
time monitoring and control with planning and
scheduling, handles fault recovery and reconfiguration
of component models, and simulates the autonomy of
a UAV [Pell et al. 1997]. However, the type of the

GTMax UAV is a helicopter, and both papers do not
handle cooperation among UAVs.

Altenburg and his colleagues present an agent
based simulator to simulate UAV cooperative control
[Altenburg et al. 2002]. In their approach, agents are
reactive agents while UAV components in our
simulation are deliberative agents. Therefore, their
agents directly respond to signals from environment,
while our agents change their intention about targets
and automatically and proactively select a different
action. Also, their agents communicate with others
indirectly through the environment while our agents
communicate with each others directly. Kolek and his
colleagues present a simulation framework to evaluate
the performance of real time tactical radio networks
with a UAV [Kolek et al. 1998]. In this paper, the
authors explain how much distributed simulation
could be applied to solve military problems, but they
do not handle the autonomy of UAVs and
coordination among UAVs.

7. FUTURE WORK

The Actor system supports distributed computational
environment and actor mobility. In the current
platform, it is the programmer’s role to determine
actor placement. However, this is hard to do when we
do not know the CPU speed and the communication
speed among different machines. Specifically, when
the communication pattern among actors is changed,
the initial placement of actors might prove to be a
deterrent to cross boundary communication. For this,
we are developing dynamic actor reconfiguration
algorithm. In the new actor platform, the
communication pattern among actors will be
monitored, and actors will be dynamically reallocated
by the platform.

Another problem of the current actor system is the
existence of Simulation Control Manager (SCM) to
control the virtual times of UAVs globally. This
component may be a bottleneck of the distributed
simulation, and if this component were to fail, the
simulation would collapse completely. To counter this,
the Jefferson’s virtual time [Jefferson 1985] based
actor platform can be used. In this actor platform, each
actor maintains its own virtual time, and when an actor
communicates with another actor and the time
difference is more than the given threshold, the
platform performs the rollback.

As another extension, we are looking to merge a
few real UAVs into UAV simulation. That is, we are
going to build a UAV simulator with the possibility of
real time input from real UAVs and virtual UAVs. In
this simulation, a real UAV can communicate with
other real UAVs and virtual UAVs to perform a virtual
task. This approach can overcome the problem of
computer simulation, such as the inaccuracy of UAV
kinematics and the communication delay defined by
programmers.

In our simulation, we use Contract Net Protocol.
It means if a UAV accepts the order from a leader UAV,

the UAV must handle the target. However, the belief
about environment changes when UAVs detects more
targets or additional UAVs become available after
having consumed value of their respective targets.
Therefore, when any change in the environment is
detected or any UAV becomes available, this
information is delivered to the leader UAV, and the
leader UAV may reconsider and change the target
assignment. Also, a member UAV may secede from its
team to handle a new target with a more attractive
force value. This idea is motivated from the leveled
commitment in Contract Net Protocol [Sandholm and
Lesser 1995].

8. CONCLUSIONS

In this paper, we have described the design and
development of a distributed UAV simulator using an
actor-based platform, a utility function, and Contract
Net Protocol. The three layered architecture for our
UAV simulation is presented: the actor-based
distributed platform, the UAV simulator, and the user
interface layer. We have described three strategies to
perform a joint mission: the self-interested UAVs
strategy, the sharing-based coordination strategy, and
team-based cooperation strategy. This has been
supplemented by our experimental results and outline
of the future work.

Our UAV simulator is working on an actor-based
distributed platform, and hence, it naturally adapts to
the behavior of a distributed and concurrent situation.
We can easily improvise the execution environment
without changing the UAV simulator by separating the
distributed platform from the simulator. For example,
we can migrate some actors from a computer to
another during the execution time. Other possible
means for improvising the working environment have
been presented in the future work section. When we
consider multiple UAVs working together, their
cooperation mechanisms are of utmost importance. In
this paper, we have presented three different
approaches, and compared and contrasted them. The
experimental results suggest that cooperation and
coordination strategies are better than the self-
interested UAV strategy. Last but not least, we have
introduced the active brokering service to support
application oriented searching.

ACKNOWLEDGEMENT

This research is sponsored by the Defense Advanced
Research Projects Agency under contract number
F30602-00-2-0586. Views and conclusions contained
in this document are those of the authors and should
not be interpreted as representing official policies,
either expressed or implied, of the Defense Advanced
Research Projects Agency or the United States
Government.

REFERENCES

Agha, G.A. 1986. Actors: A Model of Concurrent
Computation in Distributed Systems. MIT Press,
Cambridge, Mass.

Agha G.A.; I.A. Mason; S.F. Smith; and C.L. Talcott. 1997.
“A Foundation for Actor Computation.” Journal of
Functional Programming, Vol. 7, No. 1, 1-69.

Altenburg K.; J. Schlecht; and K. Nygard. 2002. “An Agent-
based Simulation for Modeling Intelligent Munitions.”
In Proceedings of the Second WSEAS International
Conference on Simulation, Modeling and Optimization,
Skiathos, Greece (Sep). Available at
http://www.cs.ndsu.nodak.edu/~nygard/research/munit
ions.pdf

Astlery M. 1999. Actor Foundry. Department of Computer
Science, University of Illinois at Urbana-Champaign,
IL (Feb. 9). Available at
http://yangtze.cs.uiuc.edu/foundry

Clausen T.H. 1998. Actor Foundry – a QuickStart.
Department of Computer Science, Institute of
Electronic Systems, Denmark (Nov. 9). Available at
http://yangtze.cs.uiuc.edu/foundry

Doherty P.; G. Granlund; K. Kuchcinski; E. Sandewall; K.
Nordberg; E. Skarman; and J. Wiklund. 2000. “The
WITAS Unmanned Aerial Vehicle Project.” In
Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI 2000), Berlin, Germany
(Aug), 747-755.

Grimes R. 1997. Professional DCOM Programming. Olton,
Birmingham, Canada, Wrox Press.

Hadzilacos V. and S. Toueg. 1993. “Fault-Tolerant
Broadcasting and Related Problems.” In Distributed
Systems, S. Mullender (Ed.). ACM Press, New York,
97-145.

Jefferson D. 1995. “Virtual Time.” ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3
(Jul), 404-425.

Johnson E.N and S. Mishra. 2002. “Flight Simulation for the
Development of an Experimental UAV.” In Proceeding
of the AIAA Modeling and Simulation Technologies
Conference and Exhibit, Monterey California, CA
(Aug), 5-8.

Kolek S.R.; S.J. Rak; and P.J. Christensen. 1998. “Battlefield
Communication Network Modeling.” The DIS
Workshop on Simulation Standards. Available at
http://dss.ll.mit.edu/dss.web/98F-SIW-143.html

OMG. 2002. The Common Object Request Broker
Architecture: Core Specification. Version 3.0.2 (Dec).

Pell B.; D.E. Bernard; S.A. Chien; E. Gat; N. Muscettola; P.P.
Nayak; M.D. Wagner; and B.C. Williams. 1997. “An
Autonomous Spacecraft Agent Prototype.” In
Proceedings of the First International Conference on
Autonomous Agents, Marina del Rey, CA, 253-261.

Sandholm T. and V. Lesser. 1995. “Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework.” In Proceedings of the 1st
International Conference on Multiagent Systems, San
Francisco, CA, 328-335.

Smith R.G. 1980. “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver.” IEEE Transactions on Computers, Vol. 29, No.
12, 1104-1113.

Smith R.G. and R. Davis. 1980. “Frameworks for
Cooperation in Distributed Problem Solving.” IEEE
Transactions on Systems, Man and Cybernetics, Vol.
11, No. 1, 61-70.

AUTHOR BIOGRAPHIES

MYEONG-WUK JANG is a doctoral candidate and
research assistant in the Open Systems Laboratory at
the University of Illinois at Urbana-Champaign. His
research interests include multi-agent system and task
allocation in open distributed computing. He received
a BS in Computer Science from Korea University in
1990 and an MS in Computer Science from KAIST
(Korea Advanced Institute of Science and Technology)
in 1992. He worked for ETRI (Electronics and
Telecommunications Research Institute), Korea, until
1998. His web page can be found at
http://www.uiuc.edu/~mjang/.

SMITHA REDDY is a Master/PhD student and
research assistant in the Open Systems Laboratory at
the University of Illinois at Urbana-Champaign. Her
research interests include distributed systems, high
speed networks, and dynamic resource sharing. She
received a BE in Computer Science from University of
Pune in 1999.

PREDRAG TOSIC is a doctoral candidate and
research assistant in the Open Systems Laboratory at
the University of Illinois at Urbana-Champaign. He
received a BS in Mathematics and Physics and an MS
in Applied Mathematics, both at University of
Maryland Baltimore County, UMBC, in 1994 and
1995, respectively, and also holds an MS in pure
Mathematics from University of Illinois at Urbana-
Champaign in 1997.

LIPING CHEN is a doctoral candidate and research
assistant in the Open Systems Laboratory at the
University of Illinois at Urbana-Champaign.

GUL A. AGHA is Director of the Open Systems
Laboratory at the University of Illinois at Urbana-
Champaign and Professor in the Department of
Computer Science. His research interests include
models, languages, and tools for parallel computing
and open distributed systems. He received a BS in an
interdisciplinary program from the California Institute
of Technology, an MA in Psychology from the
University of Michigan, Ann Arbor, and an MS and
PhD in Computer and Communication Science, from
the University of Michigan, Ann Arbor.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

