
LIMITATIONS OF THEORETICAL AND COMMONLY USED 
SIMULATION APPROACHES IN CONSIDERING MILITARY QUEUING 

SYSTEMS 
 

Nebojsa Nikolic 
Military Academy, Postgraduate School, Army of Serbia and Montenegro 

Ratka Resanovica street, No.1, Belgrade 
E-mail:  nidzan@ptt.yu 

 
 
 

KEYWORDS: 
Military queueing systems, Stochastic process 
simulation, Steady state detection, VV&A&C 
 
ABSTRACT:  
 
This paper is about military queueing systems that are 
characterized by finiteness, heavy traffic, and even 
overloading. Queueing theory deals with infiniteness. 
Simulation methods have serious problems with heavy 
traffic, and with accuracy and reliability of simulation 
results. Both do not concern themselves with 
overloading. Neglecting the fact that military queueing 
systems performed their missions in a finite time 
period, and by applying only steady state results, can 
produce big mistakes in considering their behavior and 
determining performance measures. Considering above 
problems leads to a need for an effective solution of the 
queueing transient phenomenon.   
 
1. INTRODUCTION 
 
Many military situations, processes or systems can be 
considered as queueing systems. Those can be of 
various types and sizes, and related to:  

• Battle  situations; 
• Weapon systems and various technical items; 
• Military logistic functions; 
• Command processes, and so on.  

Some very good examples can be found in literature, 
like [13.], Shephard and others, 1988. Military research 
studies usually deal with complex situations, but before 
studying those, are we  able to completely solve some 
relatively simple situations?  
 
Observation on finiteness 
 
Military units in war, are not continually engaged; 
enemy tanks, rockets and airplanes are not continually 
in sight through war; one attack or defense operation 
usually are planed and executed for a limited part of 
time. Observation about finiteness of reality is keystone 
that caused all these research efforts. Constellation of 
applicable queueing theory knowledge (steady state 
solutions) and observation on finiteness implicate the 
main hypothesis: “Real system’s behavior, in a finite 
working time, can differ from its steady state behavior”.  
 

Example 
  
Here, evacuation process of battle damaged tanks in an 
separate armored brigade will be considered. It is 
supposed that brigade performs its full battle mission. 
In general, duration of brigade’s full engagement is 
limited to about 3 to 5 days; after that time brigade 
needs some rest. Heavy-damaged tank needs special 
vehicle-HET (Heavy-Equipment Transporter; this is 
usually one wheeled wrecker) for its transportation 
from forward combat zone to rear zone, in order to be 
repaired. It is supposed that brigade has only one HET.  
 
From practical point of view, relatively simple situation 
in this example is of triple importance: firstly, service 
channel  represent HET (whose price is high); secondly, 
clients are heavy-damaged tanks, whose price is also 
high; thirdly, tanks’ battle importance can be much 
greater: evacuation, repair, and come-back to the same 
battle! Example: fantastic score of German maintenance 
units in battle for Tobruk, North Africa, April 1941, 100 
tanks damaged, 88 recovered. Finally, this is approved 
in many FMs (Field Manuals), such as: the goal is to 
manage limited resources to return the maximum 
number of critical items to the battle.  
 
This situation is chosen as an important and concrete 
enough example, on which the problem stated in title 
will be demonstrated. Table 1 presents three possible 
variants of traffic intensities.     

 
Table 1. Input values for queueing system 

 

Queueing system type is:   M/M/1/∞ 

V
ar

ia
nt

s  

Average times 
between demands  

Average 
service times 

Traffic 
intensity 

1. 240 200 0.833 
2. 200 190 0.95 
3. 200 240 1.2 

 
Using the language of military reality, solving of this 
task gives answers on the next questions which can be 
putt to S4 and/or maintenance officers: 
1.) “How much shall I have to wait for my tank to come 
back repaired?” (battalions’ commanders). 



2.) “How many places shall I have to prepare on the 
collecting point for evacuated items?” (maintenance 
unit’s commander).   
3.) “Do you need support (more HETs) for evacuation 
in your brigade?” (G4 officer in war; TOE makers in 
peace (Table of Organization and Equipment)).  
 

2. SOLVING BY QUEUEING THEORY 
 
From theoretical point of view this is a single server 
queueing system. At the first sight this is very simple 
case, almost trivial, but this can be true only for its 
structure (one queue, one server), but not for its 
behavior (Cohen's “Single server queue“ has about 600 
pages!).   
 
Above example can be easily solved using 
correspondent queueing theory formulas, but they are 
valid only in case of steady state conditions, and for 
traffic intensity of up to 1 (ρ<1). That means that the 
task for third variant, cannot be solved, even if that 
situation is really possible. Table 2 presents a few 
usually treated measures of performance of such 
queueing system. 
  

Table 2. Queueing theory steady state results 
 

V
ar

ia
nt

s  Average waiting 
time in queue  

Wq= Tµ• ρ /(1- ρ) 

Average 
queue length 

Lq=  
= ρ2 /(1- ρ) 

Average 
server 

utilization 
ρ =λ/µ 

1. 1000 4.17 0.833 
2. 3610 18.05 0.95 

3. Inapplicable for ρ>1! 
(that is: ∞, and ∞) 1.2 

Queueing system type is:   M/M/1/∞ 
 
One of the rare good things in every battle and war as a 
whole, is the fact that its duration is finite. Like in a 
sport match, playing and results are only important 
during the game time; after that it is another story. This 
fact is taken as one of the crucial moments for studying 
military queueing systems: their engagement is time 
limited. Models created for investigating such reality 
must respect this fact. Usually calculated RESULTS 
ABOVE ARE QUESTIONABLE, because it cannot be 
known in advance that our system reached steady state 
for a finite time engagement (in this example, it is a 5 
days).  
 
Queueing theory uses exact mathematical approach, but 
not for all types and size of queueing systems, and not 
for all conditions (Larson, Odoni, 1981), [7.], and this is 
“state of the art” until today. Main reason for this is a 
simple fact that “queueing theory is hard” (Kleinrock. 
1979), [6.], especially if one wants to know more about 
behavior of queueing system in the period before steady 
state. Complexity of mathematical analytic approach 

causes serious difficulties in practical application, even 
for mathematicians, and even for so-called simpler 
queueing systems. There is no doubt that dealing with 
"hard mathematics" takes a care, time and energy of the 
researcher, and instead of being dedicated to main 
subject of investigation, he is dedicated to the method.   
 
It can be summarized what the LIMITATIONS are, 
when QUEUEING THEORY should be applied in 
solving such real situations: 
1.) Treating the whole busy-cycle (transient period and 
steady state period); 
2.) Treating the complex systems (queueing networks); 
3.) Treating queuing systems of general type; 
4.) Treating overloaded systems (case when  ρ>1); and 
5.) Defining the EFFECTIVE method for solving all 
above problems; term "effective", here includes: 
universality, simplicity, reliability, accuracy and cost.  
 
Check-point 
 
In many queueing theory books, problem of practical 
beginning of steady state was not treated too much, 
however some results could be found like [10.] by 
P.Morse, where he suggests (page 67) a very simple 
formula for relaxation time of queueing system type 
M/M/1. There is no comment about maximal error 
when formula is used, but its existence itself can help 
very much, as it will be shown. For easier application, 
that formula will be transformed like this: 

2
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µ

−

Τ
=Τ   .................  (1.) 

where: T*  - relaxation time (steady state beginning); 
Tµ - average service time (Tµ=1/µ); 
ρ   - traffic intensity (ρ = λ/µ). 

 
By using this formula, steady state practical 
(approximate) beginning can be easily calculated, for 
various traffic intensities. Also, it can be expressed in 
non-dimensional, relative time units (T*/ Tµ), so the 
solution has universal character (it is valid for queueing 
system where time unit is hour, as well as for another 
with time units expressed in milliseconds, an so on). 
Let’s calculate now approximate steady state beginning 
according to formula (1.), for a set of different traffic 
intensities. Results are in Table 3. 
  

Table 3. Steady state beginning for type M/M/1/∞ 
 

Traffic 
intensity 

Approximate Steady state beginning 
[expressed in relative units: Tµ] 

0.833333 132 
0.95 1,560 
0.99 39,800 
1.2 110 

 



How to use this results: In our example queueing 
system works for a finite time of 7,200 time units; this 
value should be divided with Tµ (average service time); 
if that value is lower than the corresponding one from 
above table, than our system does not reach steady state 
during its busy-cycle. If that value is much, much 
higher, than steady state is practically reached. This is 
certainly not too much accurate procedure, but it can 
helps as a good orientation.  
 
For our example it is clear that queueing system, for 
any variants of traffic intensity does not reached steady 
state. So, it can be concluded that theoretical solutions 
(Table 2)  are NOT VALID for this example. Our 
system works all the time only in transient regime. 
Logical question now, is: if those results are not good, 
how to get correct solutions? A little poetry can help 
here: 

“Can we wait  for steady state,  
or we must study the un-steady.” 

Effective answer will be obtained by another method –  
simulation modeling.  
 

3. SOLVING BY SIMULATION 
 
Simulation paradigm and crisis 
 
Simulation itself is a phenomenon and deserves a few 
words more, but not to explore known things, rather 
specific ones, maybe new: 
 
1.) What is Simulation, is it "art or science?"– Both! It 
is Science because it must be mathematically founded 
as a method and verified by the results. It is Art because 
it include specific “know-how“ skills which still can not 
be exactly expressed: two man painting (modeling, 
programming!), one is Leonardo, the other can be 
anybody! Knowledge on Simulation can be presented as  
vocabulary, but real good doing Simulation is poetry!  
 
2.) Whatever the Simulation is, where it belongs, to 
what known sub-field of art or science? – Everywhere! 
There are a lot of various fields of engineering, but 
other areas too, where simulation takes its place. On the 
other side, there is no “Faculty of Simulation“, or 
“Simulation Academy“, so it is a paradox, but true that 
simulation is everywhere and nowhere. It might be the 
destiny, as well as any new discipline– “a new 
paradigm of science investigation”[15.].   
 
3.) Who deals with simulation? It could be said, 
simulation community consists of three general groups. 
First ones- the practitioners are those who should say: 
What to do (by simulation). Second ones- the 
mathematicians, they should say: How to do. And third 
ones- informaticians, they should only: Do it (write the 
program). One simulation “dream-team”, certainly has 
to include specialists for all three areas. The better case 
is “dream-team” league, that is a few independent 
simulation teams, working separately on the same 

problem. In that case there is a small possibility for 
monopoly on the science and truth.   
 
4.) Answer the questions linked on: goodness of an 
simulation model; and accuracy and reliability of 
simulation results, that is, very shortly- VV&A&C 
(Validation, Verification, Accreditation, Credibility) 
questions. One of the first sharp warnings to the 
simulationists came from B.Gaither [5.], more as an 
impression but high qualified (he was editor in chief of 
ACM Performance Evaluation Review): he “...does not 
know any other field of engineering or Science, where 
similar liberties are taken with empirical data”. This 
impression is confirmed 10 years later, by an detailed 
investigation [15.], where was said that more than 70% 
of simulation papers are of “don’t care” type (clearly: 
don’t care on VV&A&C). Their conclusion on this 
situation was logically marked as Crisis. An aspect of 
the “Crisis“ is mentioned also in papers of M. Neuts 
[11.]. Thinking about Crisis in simulation, and 
remembering on Tomas Kuhn’s exciting book 
“Structure of scientific revolution”, it is logical to 
conclude that time must come for radical changes in 
simulation field.  
 
Initial, transient, start-up, .…  
 
Regardless on its generality, previous notations are 
deeply involved in this investigation. One of the 
consequences is locating efforts on effective 
investigation of period before steady state. Depending 
on point of view, this period is known in a literature as: 
initial period; start-up period; transient period; non-
stationary period; warm-up  period; relaxation time. It 
could be a very interesting story about why there are so 
many names for only one thing, which is, by the way, 
just known to simulationists and specialized 
mathematicians! Also, in much literature there is an 
opinion about fast reaching the steady state, that is 
neglecting the initial period. Anyway, this is one of the 
long-lived problems in queueing simulations (from 
seventies [4.] until today).  
 

Example solving 

Simple simulation model (using GPSS) was created for 
situation described in Example, and in Table 4. are 
presented simulation results only for first variant of 
traffic intensities. There is used so-called "one 
simulation approach", but not “long simulation run”, 
then terminating (fixed time period). Many 
simulationists, certainly would have objection on this 
way of solving tasks like this one. But, this was 
necessary in order to demonstrate inferiority of "one 
simulation approach". Also, it should be noticed, that 
this approach, in some local scientific (or "scientific") 
societies is known as the only method of simulation!    
 
Table 4. shows that for different RNG, results differ 
from each other, and from theoretical results too. A set 



of logical questions arise: Which result is correct? Why 
do they differ? Why does this happen? The answer is 
simple: this approach is, principally wrong. Or, to say it 
in mathematically precise manner: above results are so 
good, as it can be an estimation of an stochastic variable 

from sample of size- one element! The ratio of maximal 
error and confidence level, for “one-element sample 
size”, is entirely un-useable. Arbitrary choosing the 
RNG which obtains the best results, is not acceptable.  

 
Table 4. One- not long- simulation run solutions for first variant (Tλ=240, and Tµ=200 time units) 

 
type 

M/M/1/∞ Denotation of used Random Number Generator RNG(i,j)) 

Case input stream RNG (i) output stream RNG (j) 

Average 
waiting time 

in queue 

Average 
queue 
length 

Average 
server 

utilization 
1. 2 6 380 1.66 0.692 
2. 3 7 437 1.51 0.740 
3. 4 5 300 1.70 0.870 

Queueing theory steady state results 1,000 4.17 0.833 
NOTES:  - simulation run-length: 7200 time units (5 days expressed in minutes) 

One long run results 
 
Commonly used simulation approaches tend to obtain 
only steady state results. In spite of modeling the 
reality, the philosophy is to model the useable queueing 
theory, that is only steady state. There are a lot of 
sophisticated, but relatively complex statistical 
procedures, which obtain steady state results.  
 

One of the problems is how to determine the simulation 
run length. For this example, the simplest procedure is 
chosen: run-length is increased 10 times, then 100 
times, and so on. Also, as we have some theoretical 
results, let it exclude statistic from first period of length 
132* Tµ, and see what happens then. The results are in 
Table 5.  

Table 5. Excluded initial transience, one long simulation run solutions for first variant 
 

Simulation’s 
run-length 

enlargements  

Denotation of used Random 
Number Generator (RNG(i,j)) 

Steady state results 
(excluded statistic from initial period of length: 

 132*Tµ =132*200 time units=26,400 time units)  

 input stream 
RNG (i) 

Output stream 
RNG (j) 

Average waiting 
time in queue 

Average queue 
length 

Average server 
utilization 

10 times  2 6 456 1.86 0.727 
100 times  2 6 743 2.97 0.808 

1,000 times  2 6 945 3.92 0.827 
Queueing theory steady state results  1,000 4.17 0.833 

   
Again, some poor results are evident. Steady state 
should begin after 132* Tµ, but results are not good 
enough. But, it is clear better steady state results for 
very long simulation run length: the longer- the better.  
Let’s translate now these modeled situations into the 
real situations: engagement duration of queueing 
system, is 50; 500; and 5,000 days respectively! Even 
entire wars, especially modern ones, do not have such 
long duration! Also, it cannot be investigated the case 
when traffic intensity is great than 1 (overloading). For 
the heavy traffic case (ρ→1), it is needed much more 
increasing of run length.    
 
It can be summarized what the LIMITATIONS are, 
when COMMONLY SIMULATION APPROACHES 
are applied in solving such real situations: 
1.) Effective treating of the transient period;  
2.) Effective treating of the heavy traffic situations; 
3.) Investigation of overloaded systems (case: ρ>1); and  

4.) Problems of VV&A&C of simulation model.  
A little poetry, again (this time by Matthew Arnold, a 
real poet; taken from Mihram's book [9.]), can describe 
known simulation, its philosophy and problems:  

“We do not what we ought, 
What we ought not we do, 
And lean upon the thought, 
That chance will bring us through.” 
 

4. IMPROVED SIMULATION APPROACH 
 
In order to overcome described limitations, an specific 
simulation approach has been developed, and it is 
marked here as improved simulation approach. By its 
nature, it belongs to the statistical methods, exactly it is: 
simulation modeling of stochastic processes, with 
implemented possibilities for generating, gathering, 
displaying and analyzing the statistics of stochastic 
processes.  



Finally, in the Table 6, there are correct results for 
considered example, for all three cases of traffic 
intensities. Sample size of 100,000 independent 

replications of considered situations, obtain high level 
of reliability and accuracy of simulation results. 

 
Table 6. Improved simulation concept results 

 
Solving method 

- type of queueing system: M/M/1/∞; 
- battle duration: 5 days; Queueing theory 

(only steady state) 
Simulation’s results 

(sample size: 100,000) 
Average waiting time in queue  1000 411 
Average queue length 4.17 1.82 Variant 1  (Tµ=200 

min., ρ=0.833) Probability of server idle time 0.17 0.27 
Average waiting time in queue  3610 526 
Average queue length 18.05 2.81 Variant 2  (Tµ=190 

min.,  ρ=0.95) Probability of server idle time 0.05 0.20 
Average waiting time in queue   (∞) 854 
Average queue length  (∞) 4.66 Variant 3  (Tµ=200 

min.,  ρ=1.2) Probability of server idle time (0) 0.12 
 
Some experience from real situations can be useful in 
understanding presented results: "Our service channel is 
really heavy-loaded and we work almost all the time, 
but the queue is not so long, nor waiting is so great!". 
But, these results are so much different, and maybe 
surprising, that method which generates them, deserve a 
few words more. Or, to say it sharply: what are the 
guaranties, that method is good.  
  
Verification of the method 
 
Concept of the method completely corresponds to 
statistic of stochastic processes. Steady state detection  
is in a complete accordance with corresponding 
theoretical approximations. Performance measures of 
queueing system, obtain by simulation, have also good 
agreement with theoretical ones.   
 
Primary performance measures. From basic queueing 
theory postulates, it can be raised that states 
probabilities are performance measures of highest 
importance, and here, they are marked as primary 
measures of performances. All other performance 
measures (queue length, waiting time, ...), depend on 
system states probabilities, and because of that, they can 
be called secondary measures of performance. But in 
practice, one wants to know just some of the secondary 
measures, and this fact is probably one of those which 
caused that primary measures are not studied too much.  
Another fact, maybe more important, is problem of 
creating one effective method for generating (solving, 
getting) states probabilities as time-dependent variables.  
 
Comparison. Here, main idea for this problem is next: 
generate states probabilities as time-dependent 
variables. Then compare simulation results with those 
ones obtained by “stronger” (analytic or numerical 
mathematic) method. It should be clear, this is possible 
only for relatively simple queueing systems which can 
be solved completely by “stronger” method. One simple 

queueing system of type M/M/1/7, is considered for a 
finite time engagement (6,000 time units). Average 
service time is 100, and average time between clients in 
input stream is 120 time units. This system is solved by 
simulation and by numerical mathematics. Results 
(states probabilities) are presented on Figure 1.  
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Figure 1. Comparison of numerical and simulated p0(t) 
 
Quantification of differences. Besides the fact that good 
concordance is clear, it is possible to apply appropriate 
statistical tests to quantify differences. Simulation 
results based on sample size of 1075 elements 
(independent replications of stochastic process). There 
is only one system state probability presented, but the 
others are similar. For this sample size: maximal 
possible error of simulations results is 11.6% for 
confidence level of 95% (confidence coefficient for this 
confidence level is: zc=1.96) for p0(t). And, this can be 
tested by chi-square test.  
 
How much (sample size) is enough. Created simulation 
approach obtains full controllability of ratio: desired 
accuracy of simulation results, and corresponding level 
of statistical confidence, for defined sample size. To be 
concrete, if we want to determine how large should the 
sample size be, for specified maximal error  
(distinction) and for desired level of confidence, in 



proportions (probabilities) estimation process, than the  
next formula can be used: 

zcp
qN 2

2100






=

ε
  .................  (2.) 

where: N - sample size; 
p  - proportion (probability) to estimate; 
q  - complement to proportion (q = 1 - p); 
ε  - percentage maximal error of estimation; 
zc – confidence coefficient. 

 
Above formula can be generated from elementary  
statistical claims explained in basic courses for 
statistics, like in [14.]. As the matter of fact, this form is 
very rare in literature. Some authors even give wrong 
formulas, or conclude that it is not possible to determine 
the exact sample size.    
 
How small (probabilities) are enough. Importance of 
considering rare events, grows in cases of heavy traffic. 
Then the question arises: how small probabilities are 
enough to consider? For answering this question, 
exceptional book [2.] can be of great help. The book  
suggests next scale for orders of magnitudes: human 
(10-6), earthly (10-15), cosmic (10-50), universal (10-1000).  
For the purpose of queueing research, only first level is 
enough. Exactly, it is enough to consider set of system 
states probabilities, which consists 99.99 % of possible 
system’s states. States’ probabilities inside this border, 
are up to 10-6 order of magnitude, for one of the worst 
cases: 0.99 traffic intensity for M/M/1 queueing system.  
 
5.Conclusions  
 
Trustworthy modeling of military queueing systems 
declares a set of specific demands (finiteness, heavy 
traffic, over-loading), to the generally used methods of 
solving queueing problems. Those demands could not 
be satisfied by known methods, so the new method is 
created. One of the central problems was effective 
studying of queueing system’s transient phenomenon.   
    
In the sense of initial goals, whole study produced a set 
of collateral effects, all of which are very positive and 
important. Famous, long-lived problems in queueing 
simulations: start-up problem, or steady state detection 
problem, accuracy of simulation results, variance 
reduction, reliability of simulation results, and heavy 
traffic situations, can be easily solved using this 
suggested method.  
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