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ABSTRACT 

Component based modeling is said to be one of the key 
technologies to improve design and development of 
software in general, and simulations in particular. The 
crucial question  is which components are successful in 
special domains. During the last two decades scientists 
at our institute have designed and developed ground 
combat simulation systems – mainly for scientific 
purposes, but also to support the German army. Our 
experiences indicate that some assumptions of 
component based modeling are too optimistic with 
respect to directly reusable software components, 
especially if multifunctional.  The main reason for this 
shortcoming lies in the problem of adjusting the 
pragmatics of different domain specific components. On 
the other hand, the reuse of concepts and algorithms has 
always been paramount in our model development.  
 
INTRODUCTION 

In order to master the complexity of reality we 
decompose it into parts (Alexander 1964; Miller 1956; 
Simon 1962). In computer science modularity is 
regarded as one of the most promising approaches to 
improve design and development of complex systems 
(Balwin 2000; Czarnecki 2000; Szyperski 1998). As 
simulation systems get more and more complex, too, 
component-based approaches spread through all 
simulation domains (Dahman et al. 1998; Kuijpers et al. 
1998; Zeigler 1993; Zeigler et al. 2000). There are both 
scientifically and practically interesting aspects of such 
approaches such as the granularity and the abstraction 
level of the components, the preconditions for their 
successful coupling and the structure of the repository 
for the storage and retrieval of the components. As 
these aspects are not independent they are discussed 
here in unity.  
 
A crucial task in component based development 
regardless of the special domain is to ensure that the 
components can be used without knowing details of 

their implementation. Ideally, it should be possible to 
use a component as a black box. However, during the 
development of our models the technical and 
syntactical aspects of coupling components didn’t put 
the major challenge. All serious problems occurred on 
the level of semantics and especially pragmatics. It is 
definitely impossible to handle such problems with 
black boxes. 
 
The remainder of this paper is organized as follows: 
Section 2 outlines the background of ground combat 
simulation systems. Section 3 discusses the problem of 
component coupling in complex simulation systems 
from a linguistic point of view which lays the 
foundation for the discussion of useful components in 
section 4, appropriate granularity in section 5, and  how 
a repository should look like in section 6. The paper 
concludes by reiterating its main results and suggesting 
some future research directions.   

GROUND COMBAT SIMULATION SYSTEMS 
 
Over more than two decades scientists at our Institute 
(IASFOR) have analyzed ground combat simulation 
systems used in the German and other armies (for 
example: JANUS, HORUS, SIRA, PAPST, KORA, 
IRIS (Stricom; IABG; CAE; Schwierz 1995) and 
designed and implemented own simulation systems (see 
below). The level of complexity of these models 
reaches from simplified test simulation systems and 
relatively simple simulations based upon cellular 
automata (ZEGA and ZELGAT (Hofmann 2000)) up to 
full scope aggregated land battle models (KOSMOS  
(Hofmann et al. 1992)) and high resolution ground 
combat models (BASIS (Hofmann et al. 1984), 
COSIMAC-P, COSIMAC-WS (Hofmann 2000)), which 
are in terms of system theory (Flood 1993) extremely 
complex. During that time the reuse of concepts, 
algorithms and code has been practiced intensively. In 
the following I have tried to sum up these experiences.  
 
Ground combat simulation systems (GCSS) are a very 
heterogeneous class of models (Hofmann 2000; 
Hartman 1985), nevertheless they all share some 



 

 

fundamental parts. Every GCSS has to model the 
following aspects of combat:  

1. terrain and environmental representation,  

2. movement,  

3. attrition,  

4. transportation (at least of ammunition), 

5. communication and  

6. reconnaissance.  

Generally, GCSS are discrete event simulations based 
upon an event queue. The GCSS mentioned above 
aren’t real time simulations, anyway internal time 
management is essential. Thus, the core of any GCSS 
will look roughly like Figure 1. If the GCSS is used for 
analysis in a closed simulation, it is necessary to add  

7. command and control modeling,  

which shouldn’t be a part of the central simulator - for 
reasons explained  in (Hofmann 2000).  
 

 
Figure 1: Essential parts of a GCSS 

 The major distinctions between the models, beside 
different purposes (acquisition, decision support, 
analyses, training), scopes and user modes (closed 
simulation or interactive), is their level of resolution: 
the level of detail at which the real world system and its 
behavior is modeled. Referring to (Davis and Bigelow 
1998) and (Davis and Huber 1992) resolution in combat 
simulation systems has six “components”:  

1. temporal scale,  

2. spatial scale,  

3. processes,  

4. entities,  

5. attributes and  

6. dependencies.  

This classification is arguable, but useful to illustrate 
the degrees of freedom for the modeling. The range of 
two of these dimensions (spatial scale and entities) can 

be easily depicted. Figure 2 shows how a combat 
scenario would look in an aggregated model and Figure 
3 shows how a combat would look in a high resolution 
model. The rectangles in Figure 2 represent brigades 
(pale gray) and divisions (dark gray) as a whole. 
Attrition occurs, when two enemy rectangles overlap, 
and is calculated with Lanchester’s differential 
equations (Taylor 1983). In Figure 3 the symbols 
represent single weapon systems of an attacking (pale) 
and defending (dark) force like tanks, armored infantry 
vehicles, mortars, armed helicopters and some other 
elements of combat like minefields, artillery impact 
areas and reinforcements of the ground. 
Detailed explanations of these figures can be found in 
(Hofmann 2000). For further reading about the 
principles of ground combat simulation I suggest 
(Hartman 1985) and (Davis and Zeigler 1997).  
 

Figure 2:  Depiction of a combat in an aggregated 
GCSS 
 

 
Figure 3: Depiction of a combat in a high resolution 

GCSS 



 

 

COMPONENTS IN GCSS: SOME 
FUNDAMENTAL ASPECTS 
 
Taking into consideration the different purposes, scales, 
user modes and resolutions of combat simulation 
systems, the degrees of freedom within each of these 
aspects and the necessity to tailor each model to fit the 
purpose, it is not very surprising that reusing software 
components directly in our GCSS was and still is a rare 
possibility, except from the use of some domain 
independent components such as random number 
generators and data bases. These components were 
always relatively easy to integrated because they do not 
contain any semantic and pragmatic context 
information.  
 
In the following, the concept of pragmatics is 
introduced to explain the difficulties with the coupling 
of domain specific and “meaningful” components as 
general as possible. 
 
As the complexity of the real world combats is too large 
to be fully captured in a model, it is necessary to 
simplify. Actually, the hard part of developing GCSS is 
not code generation but appropriate modeling 
(abstraction and idealization). Since the measure of 
this appropriateness must be the purpose of the model, 
the value of a component cannot be judged by technical 
or formal syntactic correctness only, but must be 
evaluated on the semantic and pragmatic level.   
 
The basic assumption for the following explanations is 
that the purpose of a component within a model is 
similar to the pragmatics of an utterance in linguistics. 
 
Since most computer scientists are not familiar with the 
linguistic concept of pragmatics, a short description 
may be helpful. In the semiotic trichotomy developed 
by Charles Morris, Rudolph Carnap, and C. S. Peirce in 
the 1930s, syntax addresses the formal relations of signs 
to one another, semantics the relation of signs to what 
they denote, and pragmatics the relation of signs to their 
users and interpreters (Levinson 1983, Mey 1993, 
MITECS). 
 
The central rationale for pragmatics is that sentence 
meaning (semantics) in natural languages vastly 
underdetermines speaker’s meaning (intentions). The 
goal of pragmatics is to explain how the gap between 
sentence meaning and speaker’s meaning is bridged 
(Sperper 2003). 
 
In “linguistics words” (which sometimes seem to me a 
little bit convoluted), pragmatic information concerns 
facts relevant to making sense of a speaker's utterance 
of a sentence (or other expression). “The hearer thereby 
seeks to identify the speaker's intention in making the 
utterance. In effect the hearer seeks to explain the fact 
that the speaker said what he said, in the way he said it” 

(Bach 2003). Because the intention is communicative, 
the hearer's task of identifying it is driven partly by the 
assumption that the speaker intends him to do this. The 
speaker succeeds in communicating, if the hearer 
identifies his intention in this way, for communicative 
intentions are intentions whose "fulfillment consists in 
their recognition" (Bach 1979). In other and much 
simpler words, pragmatics is concerned with whatever 
information is relevant, over and above the linguistic 
properties of a sentence, to understanding its utterance 
(Sperper 2003).  
 
As an example, consider a mountain walk of an 
experienced climber and his friend, who has always 
stayed in flat land. During the walk the climber shouts 
“Stone” and expects his friend to seek for shelter. 
Unfortunately, his friend doesn’t even raise a hand. On 
which communication level occurred the error? We can 
assume that the flatlander heard what his friend said 
(transmission), understood the phoneme “stone” and 
mentally translated it into the correct word “stone” 
(syntactic level) and knew what a stone is (extensional 
meaning of the word, semantic level). Hence the fatal 
error must have occurred on the pragmatic level as an 
failure of communicating the demand of action. 
 
It is obvious that the line between semantics and 
pragmatics cannot be absolutely definite and that some 
aspects of contextual information and other connotation 
could be placed into the semantic bucket, too. (In the 
example, one could argue that the semantic of the word 
“stone” in the context of mountain hiking has to be 
extended) But in general it is not recommended to 
extend the borders of semantics, because it quickly 
leads to person dependent ambiguity in semantic 
definitions (What if a geologist shouts stone during a 
mountain walk? Is he delighted or terrified?). 
It should be mentioned that even Noam Chomsky, the 
world’s most famous and influential linguist has stated 
that “a general linguistic theory must incorporate 
pragmatics as a central and crucial component” 
(Chomsky 1999).  
 
However, taking the nature of pragmatics into 
consideration it is no surprise that it has been omitted in 
computers science. The general guideline in all natural 
and technical sciences is to reduce subjective factors 
down to zero. Hence scientists from this research areas 
seek to find or define a pragmatics-free (context and 
connotation free) experimental system. Unfortunately, 
that approach has seldom worked in human or social 
sciences or whenever human behavior and 
communication have to be regarded.  
 
So far only the linguistic aspect of pragmatics has been 
discussed. The following sections change the focus to 
the relationship between models and pragmatics.  
 



 

 

As an introduction to this relationship consider the 
definition of semiotic qualities of conceptual models 
(see Table 1) given  by (Lindland et al. 1994). 
 
Table 1: Definition of semiotic qualities of conceptual 

models (Lindland et al. 1994) 
Syntactic quality … is the degree of correspondence 

between a conceptual model and 
its representation. 

Semantic quality …is the degree of correspondence 
between the conceptual model and 
the real world. 

Pragmatic quality … is the degree of correspondence 
between the conceptual model and 
its (individual) interpretation. 

 
The first connection between models and pragmatics is 
quite simple, but often underestimated. The standard 
situation of professional model development consists of 
a client who has a problem in a real world system which 
can’t be investigated directly and a model development 
team who is charged with the task to solve this problem 
within a model. Since the clients view of the real world 
system generally differs from the view of the model 
developers, adjustments of both views are essential 
before starting to create a conceptual model of the real 
world system. We experienced this well known 
difficulty within our development teams, too. Therefore, 
from our experience, these adjustments together with 
proper model validation are keys to model quality (see 
Figure 4) (see Hofmann 2002). Generally, the adjusting 
of the different views of the client and the model 
developer,  respectively, in our case, among the 
different model component developers is performed via 
natural language communication. Hence, the conceptual 
model can seldom be understood without taking into 
account the pragmatics of the communication.  
 

Conceptual
 model

A:
Client

B:
Model

developer

A’s view of 
the system

B’s view of 
the system

adjust
via 

communication

 

Figure 4: Adjusting personal views and validating a 
model 

 

One of the central dogmas of modern computer science 
is the demand for unambiguous programs that can be 
used without any additional context information. 
Especially for component-based software architectures 
this requirement is said to be essential. Taking this 
dogma literally implies that documentation of programs 
mustn’t be essential for model understanding and 
application, but only (extremely) helpful. Ideally the 
program/module itself (as a sequence of statements in a 
programming language) should contain the whole 
meaning/sense of the underlying (conceptual) model.  
I do not doubt that from the perspective of software 
engineering this dogma is completely justified. There 
actually is a huge amount of software components that 
fulfill this black-box criteria. However, as far as I can 
see, these components are of a very fine granularity, and 
very often monofunctional. The simplicity of these 
components in terms of degrees of freedom is the 
reason why the black-box approach works. However, to 
base a general hierarchy of domain specific components 
- that finally would lead to complex multifunctional 
modules - on  a black-box architecture is most probably 
an illusion of current software engineering. In complex 
military, economic or logistic simulation systems the 
code vastly underdetermines the modeler’s ideas and 
intentions. Therefore, model documentation in natural 
language and additional verbal communication, despite 
all their disadvantages of ambiguity and connotations, 
are essential parts of the interaction among model 
developers and users. I am also convinced that the 
restricting of programming languages to syntax and 
semantics is an illusion, that has contributed to the 
software crises. Pragmatics as the part of semiotics that 
deals with the relation of signs to their interpreters must 
be included into the theory of programming languages, 
since reused models (programs) are means of 
communication between people, too. 

USEFUL COMPONENTS 
The by fare most useful things in more than twenty 
years of military simulation experience at the IASFOR 
have been concepts to abstract and idealize reality 
and algorithms extracted from this concepts - not 
necessarily implemented algorithms and not necessarily 
algorithms that could be reused without changes. 
Hence, what one really appreciates designing or 
improving a GCSS according to a model development 
process (Figure 5) are well described and structured 
ideas of abstraction and idealization, which  balance 
the model’s need for simplification against the 
constraints of the system context and the imposts of 
the problem. Sometimes it is even the documented 
system analysis preceding the design of a conceptual 
model which is the most useful thing of an older model. 
When developing complex simulation systems like 
GCSS, one starts with the model purpose (or the 
problem definition), minds the scope of the model and 
the user mode and chooses a global level of resolution 
for time and space. Afterwards, one has to find suitable 



 

 

concepts for the modeling of the six (respectively 
seven) aspects of combat, fitting the unique 
combination of purpose, scope and general resolution. 
The relatively low degree of usefulness of software 
components is caused by the fact that they seldom fit 
into a new model without modifications. Additionally, 
if you try to find an appropriate model component for a 
new purpose, you will get lost with code. It will take 
you weeks before you grasp the idea of abstraction and 
idealization of the conceptual model from the 
executable model.  
 

 
Figure 5: An idealized view of model development 

GRANULARITY 
As a result of their work with the French simulations 
system ESCADRE, (Igarza et. al) have stated that the 
reuse of military simulations as a whole (lowest 
granularity) for a new purpose is almost always 
impossible. These experiences and opinions conform 
with our own results: As a general rule we have found 
that model components which include more than one of 
the seven aspects of combat are too specific to be reused 
for new purposes. Hence the lowest granularity level 
successfully applied in our GCSS represents the real 
world system with components that depict one aspect of 
combat. From the higher granularities (with a further 
break down of the one-aspect-components into smaller 
components (hierarchy of components)), the most 
successfully one discriminates at the level of entities, 
and there attributes. Weapon system specifications, cell 
specifications in grid terrain or priority definitions for 
target selection, for example, could be reused in a high 
resolution combat simulation system after 15 years 
without any major modifications (see (Hofmann et al. 
1984) and (Hofmann and Hofmann 2001).  
On the other hand there are some components nearly 
useless in new models. Most of them belong to an 
intermediate class of granularity that lies between entity 
level and the “aspect of combat”-level. As an example 
take support modules for the “command and control 
components” such as terrain evaluation modules, 
assessment of the own and enemy situation modules and 

other estimation modules. Even slight modification of a 
model can devalue these modules completely. 

REPOSITORIES 
As a consequence of our reasoning, repositories for 
combat simulations systems, which would be in fact 
very useful, should not be restricted to software 
component libraries like the C++ or Java libraries in the 
net (Repositories 2003). It would be more promising to 
assemble concepts and algorithms applied in combat 
simulations together with documentations of system 
analysis, model experiments and successful model 
applications. Such a repository takes the whole model 
development process (figure 4) into account. In order to 
organize a part of this repository we currently work 
with the classification scheme showed in table 12. As an 
illustration some examples are inserted as a catchword. 
Further explanations can be found in (Hofmann 2000; 
Hartman 1985, Olsen (ed.) 1994, and Farell 1989). 
 

Table 2: Classification scheme for GCSS-concepts 
 

 Aggregated 
theater level 

modeling 

Aggregated 
corps/division 

and lower 
echelon 

modeling 

High resolution 
bataillon/company 

and platoon 
modeling 

High 
resolution 

single weapon 
system and 

single person 
modeling 

terrain and 
environmental 
representation 

vector 
graphics 

large grid 
terrain 
representation 

narrow grid terrain,  
Line-of-sight 
algorithm 

3-D virtual 
reality 
algorithms 

movement 
vector 
optimization 

Branch & 
Bound 

Branch & Bound, 
A*, dynamic 
programming 

hitherto 
interactive 

attrition 

Lanchester Lanchester-
differential-
equations,  

markov-chain based 
approaches 

single shot 
models based 
upon hit 
probabilities 

transportation 

classic OR-
optimization 

classic OR-
optimization 

transport capacities explicit 
transport 
amounts 
models 

communication 
connection 
matrix 

extended 
connection 
matrix 

terrain considering 
algorithms  

line of sight-
communication 

reconnaissance 
simple 
probability 
approach 

sophisticated 
probability 
approach 

glimpse, scan, 
continuous - models 

Line of sight 
algorithm 

command and 
control 

Case-based 
reasoning 

rule-based 
reasoning 

OR-optimization, 
rule-based reasoning 

rule-based 
reasoning 

In addition the classification considers for what purposes, scales and user modes the concept 
of modelling/algorithm has been successfully applied, what resolution in detail (temporal 
scale, spatial scale, processes, entities, attributes and dependencies) has been used and what 
kind of implementations are available.  

 

CONCLUSIONS 
 
The main results of our experience with components in 
ground combat simulation systems are: 

• it is seldom possible to reuse domain specific 
multifunctional components as black-boxes, 

• the successful reuse of domain specific 
components seems similar to a successful 
communication on all semiotic levels, 

• concepts and algorithms are the key for 
successful reuse of components, 

• the value of components from different 
granularity levels is very different, too, 



 

 

• model components which include more than 
one of the seven aspects of combat are, 
generally, too specific to be reused for new 
purposes, hence the maximal amount of useful 
functionality within one component seems to 
be limited, 

• repositories for GCSS should include products 
from all phases of the model development 
process and not only executable code. 

Whether these results are transferable to other 
application domains or not is difficult for me to answer, 
but I am convinced that similar experiences must have 
been made in some other domains, too.  
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