

COMPONENT BASED MILITARY SIMULATION: LESSONS LEARNED
WITH GROUND COMBAT SIMULATION SYSTEMS

Dr. Marko Hofmann

Institute for Technology of Intelligent Systems (ITIS) and
Institute for Applied System Analysis and Operations Research (IASFOR)

University of the Federal Armed Forces Munich
Heisenbergweg 39

Germany - 85577 Neubiberg
0049 89 6004 3242

marko@informatik.unibw-muenchen.de

KEYWORDS

Components, combat simulation, pragmatics,
granularity, abstraction level, reuse, repositories.

ABSTRACT

Component based modeling is said to be one of the key
technologies to improve design and development of
software in general, and simulations in particular. The
crucial question is which components are successful in
special domains. During the last two decades scientists
at our institute have designed and developed ground
combat simulation systems – mainly for scientific
purposes, but also to support the German army. Our
experiences indicate that some assumptions of
component based modeling are too optimistic with
respect to directly reusable software components,
especially if multifunctional. The main reason for this
shortcoming lies in the problem of adjusting the
pragmatics of different domain specific components. On
the other hand, the reuse of concepts and algorithms has
always been paramount in our model development.

INTRODUCTION

In order to master the complexity of reality we
decompose it into parts (Alexander 1964; Miller 1956;
Simon 1962). In computer science modularity is
regarded as one of the most promising approaches to
improve design and development of complex systems
(Balwin 2000; Czarnecki 2000; Szyperski 1998). As
simulation systems get more and more complex, too,
component-based approaches spread through all
simulation domains (Dahman et al. 1998; Kuijpers et al.
1998; Zeigler 1993; Zeigler et al. 2000). There are both
scientifically and practically interesting aspects of such
approaches such as the granularity and the abstraction
level of the components, the preconditions for their
successful coupling and the structure of the repository
for the storage and retrieval of the components. As
these aspects are not independent they are discussed
here in unity.

A crucial task in component based development
regardless of the special domain is to ensure that the
components can be used without knowing details of

their implementation. Ideally, it should be possible to
use a component as a black box. However, during the
development of our models the technical and
syntactical aspects of coupling components didn’t put
the major challenge. All serious problems occurred on
the level of semantics and especially pragmatics. It is
definitely impossible to handle such problems with
black boxes.

The remainder of this paper is organized as follows:
Section 2 outlines the background of ground combat
simulation systems. Section 3 discusses the problem of
component coupling in complex simulation systems
from a linguistic point of view which lays the
foundation for the discussion of useful components in
section 4, appropriate granularity in section 5, and how
a repository should look like in section 6. The paper
concludes by reiterating its main results and suggesting
some future research directions.

GROUND COMBAT SIMULATION SYSTEMS

Over more than two decades scientists at our Institute
(IASFOR) have analyzed ground combat simulation
systems used in the German and other armies (for
example: JANUS, HORUS, SIRA, PAPST, KORA,
IRIS (Stricom; IABG; CAE; Schwierz 1995) and
designed and implemented own simulation systems (see
below). The level of complexity of these models
reaches from simplified test simulation systems and
relatively simple simulations based upon cellular
automata (ZEGA and ZELGAT (Hofmann 2000)) up to
full scope aggregated land battle models (KOSMOS
(Hofmann et al. 1992)) and high resolution ground
combat models (BASIS (Hofmann et al. 1984),
COSIMAC-P, COSIMAC-WS (Hofmann 2000)), which
are in terms of system theory (Flood 1993) extremely
complex. During that time the reuse of concepts,
algorithms and code has been practiced intensively. In
the following I have tried to sum up these experiences.

Ground combat simulation systems (GCSS) are a very
heterogeneous class of models (Hofmann 2000;
Hartman 1985), nevertheless they all share some

fundamental parts. Every GCSS has to model the
following aspects of combat:

1. terrain and environmental representation,

2. movement,

3. attrition,

4. transportation (at least of ammunition),

5. communication and

6. reconnaissance.

Generally, GCSS are discrete event simulations based
upon an event queue. The GCSS mentioned above
aren’t real time simulations, anyway internal time
management is essential. Thus, the core of any GCSS
will look roughly like Figure 1. If the GCSS is used for
analysis in a closed simulation, it is necessary to add

7. command and control modeling,

which shouldn’t be a part of the central simulator - for
reasons explained in (Hofmann 2000).

Figure 1: Essential parts of a GCSS

 The major distinctions between the models, beside
different purposes (acquisition, decision support,
analyses, training), scopes and user modes (closed
simulation or interactive), is their level of resolution:
the level of detail at which the real world system and its
behavior is modeled. Referring to (Davis and Bigelow
1998) and (Davis and Huber 1992) resolution in combat
simulation systems has six “components”:

1. temporal scale,

2. spatial scale,

3. processes,

4. entities,

5. attributes and

6. dependencies.

This classification is arguable, but useful to illustrate
the degrees of freedom for the modeling. The range of
two of these dimensions (spatial scale and entities) can

be easily depicted. Figure 2 shows how a combat
scenario would look in an aggregated model and Figure
3 shows how a combat would look in a high resolution
model. The rectangles in Figure 2 represent brigades
(pale gray) and divisions (dark gray) as a whole.
Attrition occurs, when two enemy rectangles overlap,
and is calculated with Lanchester’s differential
equations (Taylor 1983). In Figure 3 the symbols
represent single weapon systems of an attacking (pale)
and defending (dark) force like tanks, armored infantry
vehicles, mortars, armed helicopters and some other
elements of combat like minefields, artillery impact
areas and reinforcements of the ground.
Detailed explanations of these figures can be found in
(Hofmann 2000). For further reading about the
principles of ground combat simulation I suggest
(Hartman 1985) and (Davis and Zeigler 1997).

Figure 2: Depiction of a combat in an aggregated
GCSS

Figure 3: Depiction of a combat in a high resolution

GCSS

COMPONENTS IN GCSS: SOME
FUNDAMENTAL ASPECTS

Taking into consideration the different purposes, scales,
user modes and resolutions of combat simulation
systems, the degrees of freedom within each of these
aspects and the necessity to tailor each model to fit the
purpose, it is not very surprising that reusing software
components directly in our GCSS was and still is a rare
possibility, except from the use of some domain
independent components such as random number
generators and data bases. These components were
always relatively easy to integrated because they do not
contain any semantic and pragmatic context
information.

In the following, the concept of pragmatics is
introduced to explain the difficulties with the coupling
of domain specific and “meaningful” components as
general as possible.

As the complexity of the real world combats is too large
to be fully captured in a model, it is necessary to
simplify. Actually, the hard part of developing GCSS is
not code generation but appropriate modeling
(abstraction and idealization). Since the measure of
this appropriateness must be the purpose of the model,
the value of a component cannot be judged by technical
or formal syntactic correctness only, but must be
evaluated on the semantic and pragmatic level.

The basic assumption for the following explanations is
that the purpose of a component within a model is
similar to the pragmatics of an utterance in linguistics.

Since most computer scientists are not familiar with the
linguistic concept of pragmatics, a short description
may be helpful. In the semiotic trichotomy developed
by Charles Morris, Rudolph Carnap, and C. S. Peirce in
the 1930s, syntax addresses the formal relations of signs
to one another, semantics the relation of signs to what
they denote, and pragmatics the relation of signs to their
users and interpreters (Levinson 1983, Mey 1993,
MITECS).

The central rationale for pragmatics is that sentence
meaning (semantics) in natural languages vastly
underdetermines speaker’s meaning (intentions). The
goal of pragmatics is to explain how the gap between
sentence meaning and speaker’s meaning is bridged
(Sperper 2003).

In “linguistics words” (which sometimes seem to me a
little bit convoluted), pragmatic information concerns
facts relevant to making sense of a speaker's utterance
of a sentence (or other expression). “The hearer thereby
seeks to identify the speaker's intention in making the
utterance. In effect the hearer seeks to explain the fact
that the speaker said what he said, in the way he said it”

(Bach 2003). Because the intention is communicative,
the hearer's task of identifying it is driven partly by the
assumption that the speaker intends him to do this. The
speaker succeeds in communicating, if the hearer
identifies his intention in this way, for communicative
intentions are intentions whose "fulfillment consists in
their recognition" (Bach 1979). In other and much
simpler words, pragmatics is concerned with whatever
information is relevant, over and above the linguistic
properties of a sentence, to understanding its utterance
(Sperper 2003).

As an example, consider a mountain walk of an
experienced climber and his friend, who has always
stayed in flat land. During the walk the climber shouts
“Stone” and expects his friend to seek for shelter.
Unfortunately, his friend doesn’t even raise a hand. On
which communication level occurred the error? We can
assume that the flatlander heard what his friend said
(transmission), understood the phoneme “stone” and
mentally translated it into the correct word “stone”
(syntactic level) and knew what a stone is (extensional
meaning of the word, semantic level). Hence the fatal
error must have occurred on the pragmatic level as an
failure of communicating the demand of action.

It is obvious that the line between semantics and
pragmatics cannot be absolutely definite and that some
aspects of contextual information and other connotation
could be placed into the semantic bucket, too. (In the
example, one could argue that the semantic of the word
“stone” in the context of mountain hiking has to be
extended) But in general it is not recommended to
extend the borders of semantics, because it quickly
leads to person dependent ambiguity in semantic
definitions (What if a geologist shouts stone during a
mountain walk? Is he delighted or terrified?).
It should be mentioned that even Noam Chomsky, the
world’s most famous and influential linguist has stated
that “a general linguistic theory must incorporate
pragmatics as a central and crucial component”
(Chomsky 1999).

However, taking the nature of pragmatics into
consideration it is no surprise that it has been omitted in
computers science. The general guideline in all natural
and technical sciences is to reduce subjective factors
down to zero. Hence scientists from this research areas
seek to find or define a pragmatics-free (context and
connotation free) experimental system. Unfortunately,
that approach has seldom worked in human or social
sciences or whenever human behavior and
communication have to be regarded.

So far only the linguistic aspect of pragmatics has been
discussed. The following sections change the focus to
the relationship between models and pragmatics.

As an introduction to this relationship consider the
definition of semiotic qualities of conceptual models
(see Table 1) given by (Lindland et al. 1994).

Table 1: Definition of semiotic qualities of conceptual

models (Lindland et al. 1994)
Syntactic quality … is the degree of correspondence

between a conceptual model and
its representation.

Semantic quality …is the degree of correspondence
between the conceptual model and
the real world.

Pragmatic quality … is the degree of correspondence
between the conceptual model and
its (individual) interpretation.

The first connection between models and pragmatics is
quite simple, but often underestimated. The standard
situation of professional model development consists of
a client who has a problem in a real world system which
can’t be investigated directly and a model development
team who is charged with the task to solve this problem
within a model. Since the clients view of the real world
system generally differs from the view of the model
developers, adjustments of both views are essential
before starting to create a conceptual model of the real
world system. We experienced this well known
difficulty within our development teams, too. Therefore,
from our experience, these adjustments together with
proper model validation are keys to model quality (see
Figure 4) (see Hofmann 2002). Generally, the adjusting
of the different views of the client and the model
developer, respectively, in our case, among the
different model component developers is performed via
natural language communication. Hence, the conceptual
model can seldom be understood without taking into
account the pragmatics of the communication.

Conceptual
 model

A:
Client

B:
Model

developer

A’s view of
the system

B’s view of
the system

adjust
via

communication

Figure 4: Adjusting personal views and validating a
model

One of the central dogmas of modern computer science
is the demand for unambiguous programs that can be
used without any additional context information.
Especially for component-based software architectures
this requirement is said to be essential. Taking this
dogma literally implies that documentation of programs
mustn’t be essential for model understanding and
application, but only (extremely) helpful. Ideally the
program/module itself (as a sequence of statements in a
programming language) should contain the whole
meaning/sense of the underlying (conceptual) model.
I do not doubt that from the perspective of software
engineering this dogma is completely justified. There
actually is a huge amount of software components that
fulfill this black-box criteria. However, as far as I can
see, these components are of a very fine granularity, and
very often monofunctional. The simplicity of these
components in terms of degrees of freedom is the
reason why the black-box approach works. However, to
base a general hierarchy of domain specific components
- that finally would lead to complex multifunctional
modules - on a black-box architecture is most probably
an illusion of current software engineering. In complex
military, economic or logistic simulation systems the
code vastly underdetermines the modeler’s ideas and
intentions. Therefore, model documentation in natural
language and additional verbal communication, despite
all their disadvantages of ambiguity and connotations,
are essential parts of the interaction among model
developers and users. I am also convinced that the
restricting of programming languages to syntax and
semantics is an illusion, that has contributed to the
software crises. Pragmatics as the part of semiotics that
deals with the relation of signs to their interpreters must
be included into the theory of programming languages,
since reused models (programs) are means of
communication between people, too.

USEFUL COMPONENTS
The by fare most useful things in more than twenty
years of military simulation experience at the IASFOR
have been concepts to abstract and idealize reality
and algorithms extracted from this concepts - not
necessarily implemented algorithms and not necessarily
algorithms that could be reused without changes.
Hence, what one really appreciates designing or
improving a GCSS according to a model development
process (Figure 5) are well described and structured
ideas of abstraction and idealization, which balance
the model’s need for simplification against the
constraints of the system context and the imposts of
the problem. Sometimes it is even the documented
system analysis preceding the design of a conceptual
model which is the most useful thing of an older model.
When developing complex simulation systems like
GCSS, one starts with the model purpose (or the
problem definition), minds the scope of the model and
the user mode and chooses a global level of resolution
for time and space. Afterwards, one has to find suitable

concepts for the modeling of the six (respectively
seven) aspects of combat, fitting the unique
combination of purpose, scope and general resolution.
The relatively low degree of usefulness of software
components is caused by the fact that they seldom fit
into a new model without modifications. Additionally,
if you try to find an appropriate model component for a
new purpose, you will get lost with code. It will take
you weeks before you grasp the idea of abstraction and
idealization of the conceptual model from the
executable model.

Figure 5: An idealized view of model development

GRANULARITY
As a result of their work with the French simulations
system ESCADRE, (Igarza et. al) have stated that the
reuse of military simulations as a whole (lowest
granularity) for a new purpose is almost always
impossible. These experiences and opinions conform
with our own results: As a general rule we have found
that model components which include more than one of
the seven aspects of combat are too specific to be reused
for new purposes. Hence the lowest granularity level
successfully applied in our GCSS represents the real
world system with components that depict one aspect of
combat. From the higher granularities (with a further
break down of the one-aspect-components into smaller
components (hierarchy of components)), the most
successfully one discriminates at the level of entities,
and there attributes. Weapon system specifications, cell
specifications in grid terrain or priority definitions for
target selection, for example, could be reused in a high
resolution combat simulation system after 15 years
without any major modifications (see (Hofmann et al.
1984) and (Hofmann and Hofmann 2001).
On the other hand there are some components nearly
useless in new models. Most of them belong to an
intermediate class of granularity that lies between entity
level and the “aspect of combat”-level. As an example
take support modules for the “command and control
components” such as terrain evaluation modules,
assessment of the own and enemy situation modules and

other estimation modules. Even slight modification of a
model can devalue these modules completely.

REPOSITORIES
As a consequence of our reasoning, repositories for
combat simulations systems, which would be in fact
very useful, should not be restricted to software
component libraries like the C++ or Java libraries in the
net (Repositories 2003). It would be more promising to
assemble concepts and algorithms applied in combat
simulations together with documentations of system
analysis, model experiments and successful model
applications. Such a repository takes the whole model
development process (figure 4) into account. In order to
organize a part of this repository we currently work
with the classification scheme showed in table 12. As an
illustration some examples are inserted as a catchword.
Further explanations can be found in (Hofmann 2000;
Hartman 1985, Olsen (ed.) 1994, and Farell 1989).

Table 2: Classification scheme for GCSS-concepts

 Aggregated
theater level

modeling

Aggregated
corps/division

and lower
echelon

modeling

High resolution
bataillon/company

and platoon
modeling

High
resolution

single weapon
system and

single person
modeling

terrain and
environmental
representation

vector
graphics

large grid
terrain
representation

narrow grid terrain,
Line-of-sight
algorithm

3-D virtual
reality
algorithms

movement
vector
optimization

Branch &
Bound

Branch & Bound,
A*, dynamic
programming

hitherto
interactive

attrition

Lanchester Lanchester-
differential-
equations,

markov-chain based
approaches

single shot
models based
upon hit
probabilities

transportation

classic OR-
optimization

classic OR-
optimization

transport capacities explicit
transport
amounts
models

communication
connection
matrix

extended
connection
matrix

terrain considering
algorithms

line of sight-
communication

reconnaissance
simple
probability
approach

sophisticated
probability
approach

glimpse, scan,
continuous - models

Line of sight
algorithm

command and
control

Case-based
reasoning

rule-based
reasoning

OR-optimization,
rule-based reasoning

rule-based
reasoning

In addition the classification considers for what purposes, scales and user modes the concept
of modelling/algorithm has been successfully applied, what resolution in detail (temporal
scale, spatial scale, processes, entities, attributes and dependencies) has been used and what
kind of implementations are available.

CONCLUSIONS

The main results of our experience with components in
ground combat simulation systems are:

• it is seldom possible to reuse domain specific
multifunctional components as black-boxes,

• the successful reuse of domain specific
components seems similar to a successful
communication on all semiotic levels,

• concepts and algorithms are the key for
successful reuse of components,

• the value of components from different
granularity levels is very different, too,

• model components which include more than
one of the seven aspects of combat are,
generally, too specific to be reused for new
purposes, hence the maximal amount of useful
functionality within one component seems to
be limited,

• repositories for GCSS should include products
from all phases of the model development
process and not only executable code.

Whether these results are transferable to other
application domains or not is difficult for me to answer,
but I am convinced that similar experiences must have
been made in some other domains, too.

REFERENCES

Alexander, C.J.W.: “Notes on the Synthesis of Form”,

Cambridge, MA, Harvard University Press, 1964
Bach, K. The semantics-pragmatics-distinction,

http://online.sfsu.edu/~kbach/semprag.html (Feb.
2003)

Bach K. and Harnish, R. H.: Linguistic Communication
and Speech Acts. MIT Press, Cambridge, MA, 1979.

Baldwin C. and Clark, K.: “Design Rules: Volume 1. The
Power of Modularity“ MIT Press, Cambridge, 1999.

CAE : Information about SIRA only available with
permission: http://www.cae.com/ or
http://offizierschule.de/hptzh/sira/ (March 2003)

Chomsky, N.: On the nature of pragmatics and related
issues. (1999)
http://cogprints.soton.ac.uk/documents/disk0/
00/00/01/26/ cog00000126-00/chomsweb_399.html.

Czarnecki, K. and Eisenecker, U. W.: “Generative
Programming”. Addison Wesley, 2000.

Dahmann, J.S., Kuhl, F. and Weatherly, R.: ,„Standards
for Simulation: As Simple As possible But Not
Simpler. The High Level Architecture For
Simulation“, SIMULATION 71:6,7 p. 378-387,1998.

Davis, Paul K., and Reiner K. Huber. 1992. Variable
Resolution Modeling: Issues, Principles and
Challenges, N-3400-DARPA, RAND, Santa Monica,
Calif.

Davis, P. K., Zeigler, B.: “Multi-Resolution Modeling
and Integrated Families of Models” in: Technology
for the United States Navy and Marine Corps, 2000-
2035: Becoming a 21st Centrury Forcs; Volume 9,
National Academy of Sciences, 1997

Davis, P. K., Bigelow, J. (1998). Multi Resolution
Modeling. RAND Corporation, Santa Monica, USA.

Duchan, J. F.: The Pragmatics Revolution 1975-2000,
University at Buffalo. http://www.acsu.buffalo.-
edu/~duchan/1975-2000.html (Feb 2003)

Farrell, Robert L. 1989. Remarks on Ground Combat
Attrition Modeling, paper presented at Army
Research Office Workshop on Attrition Modeling in
Large-Scale Simulations, February 2-4, Washington,
D.C

Flood, R. L. and Carson, E. R.: Dealing with complexity:

an introduction to the theory and application of
systems science, Plenum Press, New York. 1993.

Green, G. M.: Pragmatics and Natural Language
Understanding, Hillsdale, NJ: Lawrence Erlbaum.
1989; 2nd edition 1996.

Hartmann, J.K.: Lecture Notes in High Resolution
Combat Modelling and: Lecture Notes in
Aggregated Combat Modelling. Naval Postgraduate
School, Monterey (CA). 1985

Hofmann, M.: Zur Abbildung von Führungsprozessen in
hochauflösenden Gefechtssimulationssystemen.
Dissertation, Universität der Bundeswehr München.
NG Dissertationsverlag, München, 2000.

Hofmann, H. W. and Hofmann, M.: On the Development
of Command & Control Modules for Combat
Simulation Models on Batallion down to Single Item
Level” in: “New Information Processing Techniques
for Military Systems”, RTO Meeting Proceeding MP-
049, Neuilly-sur-Seine, Cedex; Frankreich. 2001.

Hofmann, M.: “Introducing Pragmatics into VV&A” in:
Proceedings of the 2002 European Simulation
Interoperability Workshop (Euro-SIW), London,
2002,

Hofmann, H.W., Litzbarski, S., Rochel, T., Steiger, K.:
„Basis - Ein Gefechtsmodell auf Btl/Rgt-Ebene, Band
1: Beschreibung des Gefechtsmodells“. IASFOR-
Bericht S-8401, Universität der Bundeswehr
München, Neubiberg. 1984

Hofmann, H.W., Rochel, T., Schnurer, R., Tolk, A.:
KOSMOS - Ein Gefechtssimulationsmodell auf
Korps-/Armee-Ebene, Band 1: Beschreibung des
Gefechtsmodells. IASFOR-Bericht S-9208,
Universität der Bundeswehr München, Neubiberg.
1992

IABG: Information about HORUS, PAPST and KORA
only available with permission: http://www.iabg.de/
(2003)

Igarza J.-L. et al.: „Development of a HLA compliant
version of the French ESCADRE simulation support
environment (SSE): lessons learned and
perspectives“, Centre d’Analyse de Défense
(DSP/DGA), Frankreich, 1998

Kuijpers, N. van Gool, P. and Jense, H.: „A Component
Architecture for Simulator Development“, TNO
Physics and Electronics Laboratory, The Hague,
1998.

Levinson, S. C.: Pragmatics, Cambridge University Press,
Cambridge. 1983.

Lindland, O. I., Sindre, G., Solvberg, A.: Understanding
quality in conceptual modeling. IEEE Software, Vol
11, No. 2, March 1994, 42-49

Mey, Jacob L.: Pragmatics: An introduction.: Blackwell,
Oxford .1993

Miller, G. A.: “The magical number seven plus minus
two: Some limits of our capacity for processing
Information”, Psychological Review 63, pp. 81-97,
1956.

MITECS: Abstracts on Pragmatics
thttp://cognet.mit.edu/MITECS/Entry/horn2 (2003)

Olson, W. K. (ed): Military operations research analyst’s
handbook, Volume 1: Terrain, unit movement, and
Environment, MORS, Alexandria, VA. 1994.

Pötzsch, V. Entwicklung und Implementierung von
Modulen für die Prozesse Bewegung, Abnutzung und
Aufklärung und Entwurf eines Rahmens für
Führungsmodule für das Gefechtssimulationmodell
COSIMAC. Diplomarbeit. Universität der
Bundeswehr München, Neubiberg. 1997.

Repositories: (March 2003)
http://www.sei.cmu.edu/publications/documents/98.r
eports/98tr011/98tr011chap04.htm

 http://www.npsnet.com/danf/software/library.html
Schwierz K. (1995). Laborbetrieb IRIS. DASA-Dornier,

Friedrichshafen.
Simon, H. A.: “The Architecture of Complexity”, in:

Proceedings of the American Philosophical Society
106, pp. 467-482, 1962, reprinted in: idem, The
Science of the Artificial, 2nd ed. Cambridge, MIT
Press, 1981.

Sperper: Pragmatics-modularity-and-mindreading.:
http://www.dan.sperber.com/pragmatics-modularity-
and-mindreading.htm

STRICOM: (March 2003)
http://www.stricom.army.mil/PRODUCTS/JANUS/

Szyperski, C.: Component Software – Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

Taylor, James G. 1983a. "An Introduction to Lanchester-
Type Models of Warfare," in Proceedings of the
Workshop on Modeling and Simulation of Land
Combat, L.G. Callahan (ed.), Department of
Continuing Education, Georgia Institute of
Technology, Atlanta, Ga.; Taylor, James G. 1983b.
Lanchester Models of Warfare, two volumes,
Operations Research Society of America, Arlington,
Va.

Turner, Ken (ed.) The Semantics/Pragmatics Interface
from Different Points of View. (Current Research in
the Semantics/Pragmatics Interface, vol. 1). Oxford:
Elsevier, 1999.

Zeigler, B. P., Praehofer, H. and Kim, T. G.: „Theory of
Modelling and Simulation“, ACADEMIC PRESS,
San Diego, USA, 2000

Zeigler, B. P. : „Object-Oriented Simulation with
Hierarchical, Modular Models“, ACADEMIC
PRESS, Boston, USA, 1993.

Author Biography

MARKO HOFMANN is Project Manager at the
Institute for Technology of Intelligent Systems (ITIS),
Neubiberg, Germany. After his studies of computer
science at the University of the Federal Armed Forces
in Munich he served two years in an army battalion
staff. From 1995 to 2000 he was research assistant at
the Institute for Applied System Analysis and
Operations Research (IASFOR) at the University of the
Federal Armed Forces. Since April 2000 he is

responsible for basic research in applied computer
science (component based modeling, combat simulation
systems, VV&A). He gives lectures at the University
of the Federal Armed Forces (operations research).

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

