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ABSTRACT 

This paper sets out to address the problem of 
representing the impact of variability in human 
characteristics and abilities on overall performance in 
military systems.  It is argued that a key element of the 
impact is the interaction between individual 
characteristics and environmental stress.  An approach 
to modelling the variation of multiple characteristics is 
put forward using factor analysis.  An example is 
calculated using anthropometric data, and the 
application of the approach is demonstrated using the 
Integrated Performance Modelling Environment (IPME) 
to model the variation in performance of a Surface-to-
Air Missile (SAM) operator subject to different levels of 
thermal stress. It is concluded that under stressful 
conditions up to one third of the subject population may 
find the task too demanding. 
  
INTRODUCTION 

This paper outlines the demands of modelling changes 
in human performance and variability in performance 
degradation due to both environmental factors and 
individual characteristics.  The focus of the paper is on 
the problems of modelling human operators rather than 
modelling the behaviour of system components.  A 
popular human factors approach to modelling 
performance is to use task analysis for the dissection of 
what the operator has to do, and then to simulate the 
system and operator elements together using task 
network modelling (Graine 1984; Hood et al. 1993). 
Examples of tools that use this approach are Micro 
Saint, a commercially available general-purpose 
discrete-event simulation tool, and the Improved 
Performance Research Integration Tool (IMPRINT) 
developed for the United States Army Research 
Laboratory for specialised workload and staffing 
analysis.  
 
In parallel with the development of frameworks for 
analysing operator performance in systems, there has 
been an attempt to systematise understanding of 
cognitive and physical performance by defining 

taxonomies and other models (Farina and Wheaton 
1971; Roth 1991).  By relating the effect of a stressor to 
particular task types, it is possible to construct a concise 
mapping from environmental stress to task performance, 
and thus model performance degradation.  This is the 
approach used in both IMPRINT and the Integrated 
Performance Modelling Environment (IPME), a Unix-
based discrete-event simulation tool.  The effects of 
stressors have been examined with respect to overall 
system performance, but variability of system 
performance due to individuals has not been typically 
included in an analysis.  This paper argues that stressors 
and variability of individuals combined are an important 
component of the variability of system performance. 
 
To establish a strategy for the representation of the 
effect of stressors and variability on human performance 
in a broad range of model frameworks, the following 
three issues need to be considered: 
1. The phenomena we are trying to represent 
2. How stressor effects and human performance are 

currently represented 
3. How present methods can be developed in the 

future 
 
THE NATURE OF THE PHENOMENA 

The military context is noteworthy for the wide range of 
potential stressors to which personnel are exposed. A 
basic list of stressors, which aims to focus on the most 
important, contains 10 potential sources that should be 
considered (Belyavin 1999): 
• Sleep loss fatigue/circadian effects and time on task 
• Physical fatigue 
• Thermal effects (thermal strain/dehydration/ 

discomfort ) 
• Visual environment 
• Fear/Anxiety/Morale 
• Task demand – workload 
• Noise (continuous and impulse) 
• Vibration 
• Hypoxia (loss of oxygen in high flying fast jets) 
• High G (fast jets only) 
 
Before the effect of environmental stress or variability 
can be defined, it is necessary to define what the 
operator(s) have to do, and specify metrics through 
which performance can be quantified.  In observational 



work, a task has customarily been defined as the 
smallest unit of operator activity with an observable 
output, and this definition has generally been retained in 
task network modelling.  The metrics of task 
performance have then been defined usually as the time 
taken to undertake the specified task, and the accuracy 
with which the task has been executed.  
 
This general approach has been employed in the 
modelling of human performance by identifying the 
degradation factor associated with the particular 
stressor, and applying it to the time taken to do the task.  
Variability has been modelled by making time-to-
perform a stochastic variable.  If suitable data are 
available, a similar approach has been used to estimate 
the effect on error, although the latter has proved more 
difficult in practice. 
 
The stressors in the above primary list can be divided 
into two groups: those arising directly from the 
environment, such as heat, noise, vibration; and those 
arising from the context of the task, such as sleep loss, 
physical exertion or fear.  The first group describe a 
direct change to the environmental conditions that 
influences human performance through a change in 
operator state. The second group includes stressors that 
are modified in a less direct manner, although their 
performance effects are also clearly mediated by a 
change in the state of the operator and may be 
moderated by individual traits.  
 
Any description of the effect of both groups of stressors 
should at least recognise the change in the state of the 
operator implicit in the exposure to the stressful 
condition.   Figure 1 shows how the sequence of cause 
and effect between environment change and 
performance change can be represented.  Any change in 
the environment may be modified through the impact of 
individual characteristics at both stages of the process. 
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Figure 1: Sequence of Cause and Effect in Performance 
Changes 

 
In the psychological literature, a similar approach to the 
analysis of the effect of stress on performance has been 
employed, although there is a tendency to identify a 
single state measure – arousal – rather than a 
multiplicity of state dimensions as the previous outline 

suggests.  Whether a single state can be employed to 
cover all possible stressors remains to be tested 
rigorously.  What the scientific evidence indicates is 
that a sound predictive model of human performance 
under stress should be considered as comprising two 
stages: first a model of operator state, and then a model 
relating state to task performance (Belyavin 1999).  
Both stages of this model may be subject to variability 
in individual characteristics.  For example, change in 
body temperature in response to a change in thermal 
environment is affected both by clothing and individual 
body characteristics.  Additionally, the operator’s task 
performance as a result of having a high body 
temperature may be mediated by personality. 
 
THE IMPLEMENTATION IN IPME 

The approach represented diagrammatically in Figure 1 
has been implemented in IPME.  IPME is a discrete-
event simulation system with a graphical modelling 
interface used to predict human performance.  It is a 
Linux-based integrated environment of simulation and 
modelling tools for answering questions about systems 
that rely on human performance to succeed.  IPME 
focuses on the human, the tasks that the human 
performs in support of a goal, the environment in which 
the human operates, the stressors that affect human 
performance, and interfacing with external simulations. 
 
An IPME system model is composed of four component 
models: Environment, Crew, Performance Shaping and 
Task Network.  The Environment, Crew, and Task 
Network models formally represent the cascade 
displayed in Figure 1.  The Environment model 
represents the factors that control the physical, mission, 
threat, and crew environment.  The Crew model 
represents the human operators in the system, including 
the operator characteristics, which include states, traits, 
and properties. States are changing operator 
characteristics such as temperature or fatigue.  Traits are 
non-physical operator characteristics that remain 
constant during a simulation execution, such as fitness, 
cognitive ability, or personality.  Properties describe an 
operator’s physical characteristics, such as hands or 
eyes.   
 
The Performance Shaping model contains functions that 
represent an operator’s ability to perform a task, based 
on operator states and traits, and impact task time or 
probability of failure. The Task Network model 
represents the system processes, including those 
performed by human operators, and relates the 
environmental factors, performance shaping functions, 
and operator characteristics. 
 
It has long been recognised that human performance of 
an individual task is subject to stochastic variation, and 
this has been captured in task network modelling 
frameworks through the variability of individual task 
performance.  In practice this variability comprises two 
components: intra-individual variability (variability in 



individual performance from occasion to occasion) and 
inter-individual variability (variability between the 
performance of individuals within the target population) 
determined by individual characteristics.  The second 
source of variability induces correlation between task 
performance for an individual for different tasks. 
Representing overall variability through independent 
variation of performance of different tasks does not 
reflect reality.  The induced correlation is captured in 
the repeated measures model employed in statistical 
analysis.   
 
A repeated measures model has been implemented in 
IPME to enable variability in system performance to be 
described.  The Crew model has been modified to allow 
a sample of individual operator traits to be selected 
using a chosen joint distribution of operator traits. The 
remainder of the performance-shaping model has then 
been exploited to represent the impact of variation in 
traits on operator performance.  As an example of the 
overall process, a preliminary model of the effect of 
variation in operator characteristics on performance 
under thermal stress has been implemented. 
 
THE STATISTICAL MODEL 

Before implementing the repeated measures model in 
IPME, an appropriate model of the distribution of the 
characteristics in the target population was first 
constructed.  It is clearly necessary to consider multiple 
characteristics simultaneously, so a multivariate 
approach is essential. Although it is relatively simple to 
develop a sampling methodology for a single variable, it 
is considerably more difficult to achieve the same goal 
for a multivariate population, since potentially complex 
interdependencies between the variables must be 
accommodated. 
 
A well-established approach to the problem of 
describing a complex multivariate population is to 
reduce the dimension of the relevant space to a small set 
of fundamental factors and to derive the values of all the 
measures from the reduced set of factors through simple 
functional relationships. If the fundamental factors are 
distributed independently, the sampling problem is 
reduced to that of sampling from a set of independent 
univariate populations.  A key step in the argument is 
the construction of independent factors from a larger set 
of interdependent variables. This is achieved through 
linear transformation only in the case of the multivariate 
normal distribution, where all linear combinations of the 
variates are normally distributed.  
 
A procedure that achieves the goal for unimodal 
distributions of characteristics is as follows: 
 
1. Test a sample for multivariate normality.  
2. If normality is rejected, seek power transformations 

of the variables to normality, using the maximum 
likelihood procedure of Box and Cox (1964). 

3. Confirm multivariate normality for the transformed 
variables.  

4. Calculate principal components of the transformed 
variables 

5. Retain a minimum sufficient set of principal 
components 

6. Confirm multivariate normality for the retained 
principal components 

7. Derive the best relationship between the original 
variables and the principal components by inverting  
the transformations 

 
ANTHROPOMETRIC CHARACTERISTICS 

The procedure outlined in the previous section was 
applied to a set of three anthropometric variables used 
in the prediction of thermal strain: Body Weight (Wt), 
Height (Ht) and Mean Weighted Skinfold Thickness 
(MWST). These three measures are interrelated since 
both Ht and MWST affect Wt, and an approach to 
sampling the population must take account of the 
interdependencies.  
 
The sample of data used in the analysis was drawn from 
the anthropometric study of aircrew characteristics 
conducted in the UK in 1973 (Bolton et al. 1973). As a 
first step, descriptive statistics were calculated for all 
three measures as shown in Table 1, and multivariate 
normality was tested using Mardia’s (1970) measures of 
kurtosis and skewness. It was concluded that the 
population was non-normal and the initial variables 
should be transformed.  
 

Table 1: Descriptive Statistics for Original Measures 
 

Measure Mean Std. 
Dev. 

Skew. Kurt. 

Ht  
(mm) 

1774.0 62.34 0.050 3.159 

Wt  
(Kg) 

75.0 8.75 0.253 2.983 

MWST 
(mm) 

11.1 3.63 0.848 4.010 

 
Power transformations of the measures were selected 
using the maximum likelihood procedure of Box and 
Cox (1964), and the following transformations were 
determined: 
 
Ht No transform 
Wt Square root transform 
MWST Logarithmic transform 
 
After confirming the normality of the transformed 
variables, principal components of the correlation 
matrix were calculated for the three-dimensional space.  
It was concluded that two components accounted for 
94.1% of the variance. An orthogonal  varimax rotation 
of the two components was calculated and the resultant 
components were standardised to unit standard 
deviation. The correlation matrix is displayed in Table 



EXAMPLE SYSTEM 2, and the principal components are displayed in Table 
3. The system that was used to investigate this prototype 

statistical model was a model of a Surface-to-Air 
Missile (SAM) system that depends on optical detection 
and recognition of an incoming target.  In the SAM 
model, it is assumed that there is a command centre that 
detects targets and passes them to a system operator in 
the field.  The system operator then must detect and 
identify the incoming target before the target is 
engaged.  The physical work rate associated with the 
system was assumed to be relatively low, so an artificial 
scenario was constructed in which it was assumed that 
the operator had to march briskly carrying a 20 Kg load 
for 30 minutes before a rapid series of engagements was 
commenced. It was then assumed that, if the system 
operator’s core temperature exceeded 38.5° C, the 
operator would rest.  Neither the system nor the scenario 
is based on real systems, but they provide a basis for 
illustrating how the variability of anthropometric data 
can be applied in IPME. 

 
Table 2: Correlation Matrix Between Transformed 

Measures 
 

 Ht Wt 
Wt 0.525  
MWST -0.031 0.618 
 

Table 3: Rotated Principal Components 
 
 Factor 1 

Loadings 
Factor 2 
Loadings 

Ht 0.001 0.981 
Wt 0.752 0.592 
MWST 0.971 -0.078 
 
The multivariate normality of the two-dimensional 
space was again checked using Mardia’s skewness and 
kurtosis measures, and normality was not rejected. The 
best linear predictors of the transformed variables were 
then calculated and the formulae for reconstructing the 
original measures from the principal components 
derived. Constructing a sample from the tri-variate 
population is in this way reduced to generating a sample 
from a pair of independent normal variates in standard 
measure and applying the calculated relationships 
displayed in Table 4. 

 
The complete system model was constructed from three 
components: 
1. Target Client: a simple application that generates a 

series of targets for the SAM system 
2. Thermal Client: a whole body thermophysiological 

model (Higenbottam and Belyavin 1998) 
3. IPME System Model: a task network model 

describing the operation of the system.  
  

Table 4: Generation of Anthropometric data The task network model includes the model of operator 
variability. Both the Target and Thermal applications 
are client applications to IPME, communicating with 
IPME via a TCP/IP sockets protocol. 

 
Measure Function 
Ht 1774.5+0.08237*Fac1+61.138*Fac2 
Wt 0.1*(27.73+1.1987*Fac1+0.9434*Fac2)2 

MWST Exp(2.354+0.3135*Fac1-0.02517*Fac2) 
Fac1 and Fac2 are independent normal variates 

 
The target client supplies target position and speed to 
the IPME simulation.  IPME informs the target client of 
missile launch, enabling the target client to manage 
potential interception.  The thermal model client 
supplies the current thermal state to IPME, and 
calculates water loss due to sweating.  IPME supplies 
environmental conditions, the operator’s clothing state, 
and the operator’s current physical work rate to the 
thermal model.  A diagram of this relationship is 
displayed in Figure 2. 

 
In addition to the anthropometric data, there is evidence 
of individual variability in the metabolic cost of load 
carriage while walking. A good indication of the 
expected metabolic cost of movement while carrying 
load has been derived by Pandolf et al (1977). Recent 
work at QinetiQ indicates that there is individual 
variability about the expected value that can be 
described by a multiplier that is normally distributed 
about 1.0 with a standard deviation of approximately 
0.09. 
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This model was implemented in IPME by generating 
two operator traits that were sampled independently, 
and deriving the values of the key traits from them using 
the relationships provided in Table 4. The scaling 
multiplier for metabolic cost of movement while 
carrying load was sampled as a third independent 
variable, and used to scale the metabolic cost of 
movement. 
  



Figure 2: Relationship Between IPME and Client 
Applications 

 
The task network model is displayed in Figure 3. 
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Figure 3: The SAM System Task Network Model 
 
The system operator has to perform some physical 
activities to perform his or her task, as well as detecting 
and identifying incoming targets using an optical sight.   
To demonstrate the variability in system performance 
due to operator characteristics, a sample of 12 operators 
was generated based on the characteristics outlined in 
the previous section. Each operator was exposed to two 
conditions:  
 
1. Dry bulb temp.: 26° C, Relative Humidity: 50% 
2. Dry bulb temp.: 32° C, Relative Humidity: 50% 
 
In both conditions the operator wore clothing with a 
thermal insulation of 1 clo. For the 30 minutes 
preceding the arrival of the targets, the operator walked 
briskly on level ground (1.75 metres sec-1), carrying a 
load of 20Kg. While engaging the targets the operator 
was assumed to be working at a steady 50 Watts. 
 
There are two routes through which the operator traits 
can impact performance. The direct effects of the 
operator traits will be on thermal strain in response to 
the environmental and clothing conditions. The main 
consequence will be the need for the operator to rest if 
his core temperature reaches 38.5°C. A number of 
smaller effects of thermal strain and dehydration on task 
performance were included as Performance Shaping 
Factors in the model. These were based on those 
described in Belyavin (2000), and it was anticipated that 
they would influence the precise timings of 
interceptions if and when they occurred. 
 
The performance of the operator in successfully 
engaging targets was taken as the overall measure of 
effectiveness. In addition, core temperature, skin 
temperature and sweat loss were measured. Preliminary 
analysis of the results from this prototype model 
indicated that, under the less stressful condition, all 
engagements that could be achieved were successful. 

Under the more stressful conditions, 4 of the 12 subjects 
failed to complete the task, and thus failed to engage the 
last one or two targets. These subjects were the fattest 
and heaviest of the sample, and it would be anticipated 
that they would experience the largest thermal strain. 
 
Under the less stressful condition, the mean core 
temperature reached 37.99°C at maximum, whereas, 
under the more demanding condition, the mean core 
temperature reached 38.45°C at maximum. This is 
consistent with the observation that all the operators 
continued to work in the first condition, but four 
stopped work in the second.  
 
The precise timing of the interceptions varied from 
occasion to occasion but there was no evidence of an 
effect due to subject traits.  It was concluded that in this 
particular example the “indirect” effects of thermal 
stress embodied in the Performance Shaping factors had 
relatively little impact on overall system performance. 
  
FUTURE DEVELOPMENT 

The model described in the previous section is simple 
and the effect of the varying characteristics on system 
performance is direct. However, even this relatively 
simple model embodies a number of critical concepts: 
the use of clients to describe additional processes, the 
cascade from environment to task performance, and the 
variability of individual characteristics.  These 
underlying principles are reflected in the IPME 
architecture by design; however, these design principles 
may be applied in a broad range of architectures, such 
as those used in the construction of Computer Generated 
Forces or other discrete-event simulation engines. 
 
Although the example discussed in this paper directly 
relates to dismounted soldiers and thermal stress, these 
same concepts may be applied to other stressors, such as 
physical fatigue, and other operator traits due to the 
general and extensible implementation in IPME. 
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