
RAMA : a lightweight rule-based tool
for expressions analysis and code generation

Vincent Fischer, Loig Allain, Laurent Gerbaud
Laboratoire d’Electrotechnique de Grenoble, CNRS UMR 5529 INPG/UJF

ENSIEG BP 46, 38402 Saint Martin d’Hères, France
vincent.fischer@leg.ensieg.inpg.fr, loig.allain@leg.ensieg.inpg.fr, laurent.gerbaud@leg.ensieg.inpg.fr

Abstract - This paper presents a lightweight tool
for mathematical expressions analysis and code
generation. This tool, called RAMA (Rule
Applicator for Mathematical Analysis) is based
on rules written in a XML format. In this way, it
is generic and extensible and it can be used for
various purposes. RAMA is based on a
representation for mathematical expressions, on
which rules are applied in order to perform
some actions, e.g. : symbolic differentiation.
In a first part, the specifications of the software
are presented. In the second part, its
architecture and its operating are explained.
Then, the representation model of mathematical
expressions is presented. The software
architecture is the detailed. Finally, some
application cases are presented.

1. INTRODUCTION

This paper presents RAMA, a lightweight tool
written in JAVA, designed for the analysis and the
treatment of mathematical expressions and code
generation. This tool can be used for various
purposes, from basic mathematical operations such
as derivation, to high-level programming tasks like
expression splitting.

2. SPECIFICATIONS

RAMA (Rule Applicator for Mathematical
Analysis) is a Java tool dedicated to analysis and
treatment of mathematical expressions, and code
generation. RAMA is built in order to perform
complex operations, decomposed into a set of
elementary operations, on mathematical
expressions. Such operations are named “rules” as
RAMA acts like an inference motor.
The specifications of RAMA are then to be:
• lightweight : it has to perform quick operation

without taking a large amount of time and of
memory. Beside, it has to be easily
distributable.

• generic : it has to be able to handle any type of
mathematical expressions, and it has to apply
every action defined by the user on these
expressions. These actions are described by
using a “rule” representation.

• easily extensible : new actions can be defined
within a relatively short time and without any
specific programming knowledge

• easy to use : actions are described in an
intuitive way, and applying actions on an
expression requires a small amount of
instructions.

Symbolic softwares, like Maple [1], Mathematica
[2] and Macsyma, etc., offer great possibilities for
symbolic treatments. However, they are limited
when it comes to generate computation code in
several programming languages. In the paper, the
aim of RAMA is mainly code generation with
simple symbolic treatments, rather than complex
ones.

3. SOFTWARE ARCHITECTURE

The RAMA architecture is based on an intern
representation of mathematical expressions, and a
set of operations to perform loaded from an XML
file. In RAMA, these operations are known as
“rules”.
The intern representation of mathematical
expressions is named MOM (which stands for
Mathematical Object Model). Basically, a MOM is
a tree, which is a classical representation for
mathematical expressions [3][4].
RAMA is a “tree walker”. By exploring the tree
(MOM), rules are selected depending on the current
explored structure.
An operation, for example derivation, is described
by the user who provides a set of rules describing
the operation to perform. These rules are
transcriptions of the elementary mathematical
actions that represent the result of symbolic
treatment. For example, the result for the
application of the differentiation operation on the
node ()xsin is ()xdx cos⋅ . This defines an
elementary rule for the differentiation operation.
These rules are written in a XML format, like
shown on Fig. 1 :

<RAMA:RULE>

<RAMA:CONTEXT priority="2">
<RAMA:MOM name="sin"/>

</RAMA:CONTEXT>
<RAMA:RESULT>

<RAMA:MOM name="*" type="operator">
<RAMA:apply-ruleset name="differentiate" select="self/child::*"/>
<RAMA:MOM name="cos" type="function">

<RAMA:copy select="self/child::*"/>
</RAMA:MOM>

</RAMA:MOM>
</RAMA:RESULT>

</RAMA:RULE>
Figure 1: the rule for the differentiation of sinus

An operation is defined by a certain number of
rules, which form this operation’s rule set. This rule
set is coded in an XML format and written in a file
(one file per rule set).

The general operating of RAMA is presented in
Fig. 2.

Inference engine

MOM

MOM

Rule Set

Figure 2: general operating of RAMA

The rule set is applied on a MOM object, and builds
another MOM, which represents the result of the
application of the operation defined by the rule set.

3.1. The Mathematical Object Model (MOM)

The Mathematical Object Model, or MOM, is a tree
representation of mathematical expressions. The
tree nodes are the operators, the functions, the
variables and the constants of the expressions. A
node is defined by :

- a type (operator, function, variable or
constant)

- a name, represented by a string
reproducing its identity

- some children.
An example of a MOM tree is given in Fig. 3.

2 cos

x
Variables

Functions

Operators

Constants

*

Figure 3: MOM representation of ()xcos2

While nodes representing the operators (e.g. +,-,*,/)
are binary ones, nodes representing the sign
operators + and – are unary nodes. Nodes
representing variables and constants cannot have
any child. Finally, nodes representing functions are
planar nodes (they can have any number of
children). The MOM representation of expressions
is rather simple but very efficient for RAMA
purposes.

3.2. The inference engine architecture

The principle of the inference engine is similar to
the one found in expert systems (see fig 4). While
an expert system values action to be performed
depending on the current context, the inference
engine selects a rule considering the current
selected node in a tree (a MOM). A rule is defined
by a context and a result. The context is at least a
single node, but can be more detailed, with a whole
branch of a tree. The result contains the description
of the tree to build by the application of the rule on
the node which is compliant to the context. This
operating is illustrated in Fig. 4.

MOM

RuleSets
XML Files

RuleSet Factory

RuleSet

Inference Engine

Rule Choice

Rule

Rule Execution

MOM

(1)

(2)

(3)

Figure 4: the operating of the rule applicator

The rule sets are described in an XML files (1), to
ensure easy extensibility. Classical mathematical
operations can be described as a list of rules formed
as following :

“if the object is compliant with <CONTEXT>
then the result is <RESULT>”.

It is very convenient to declare actions as a set of
rules, in a file. This file is parsed and a “factory” (2)
instantiates each elementary rule to be used by the
inference engine.
Then a MOM is explored by the inference engine.
This inference engine selects a rule from the set that
complies with this MOM (3), and the associated
actions are finally performed. The rule choice
strategy is made in two steps :

- in the first step, all the rules applicable to the
MOM object are selected
- in the second step, among these ones, the rule
with the highest priority is chosen.

As the application of a rule results in an other
MOM, this one can be reused by the inference
engine to apply another rule set, or to translate the
resulting MOM into other formats, such as ANSI-C
mathematical expression (C code generation), or to
a Java computation code, or to any other language
for which a translator has been written.

3.3. The XML Rule Set Format

The rules are gathered together into a rule set. This
rule set defines an operation, and its rules are
written in a specific XML format. This structure is
easy to understand for the user.
A rule set is a file that contains as much rules as it
is needed to describe the operation. Each of the
rules is composed of two parts:

- an application context : this is the context
in which the rules applies. When RAMA is
“walking” the tree, it comes up with a node
on which it has to apply the operation
wanted by the user. This node is compared
with all the contexts contained in the rule
set. Among the compliant contexts found,
the one with the highest priority is chosen.
The priority of each context is given by the
user in the rule set file.

- the result of the application of the rule on
this context, given by its tree
representation.

Some basic actions are available to build the result
of the application of the rule, like the copy of
nodes, the call to the application of a rule set on the
selected nodes, etc…

3.4. Rule example

For example, the result of the application of the
action differentiation on the node ()xtan is :

()()xdx 2tan1+⋅ .
This is an elementary derivation rule. In this rule set
for the differentiation operation, the rule defining
the differentiation of tangent (“tan”) nodes will be
written as shown in Fig. 5.

Figure 5: the rule for the differentiation of “tan”

When a “tan” node is encountered by the rule
applicator, the result of the application of the
derivation is a “*” node with two children :

- the result of the application of the
derivation action on the child of the “tan”
function node, namely its parameter.

- a “+” node with a child being a “1”
constant node, and its other child being a
“pow” function node with two children :

the copy of the initial “tan” node and the
constant node “2”.

This result can be illustrated by the following tree
(see fig. 6):

*

differentiate(child) +

1 pow

tan 2

child

Figure 6 : the tree representation of the differentiation rule of
“tan”

The path format used for node selection (like for
example on the “apply-ruleset” node, to select the
node on which the rule set will be applied) is
derived from the W3C XPath specification [5],
adapted to be specific to the MOM norm.

Finally, the application of an action on an
expression consists in applying the dedicated rule
set to the tree representation root. With the
recursivity shown above (the call to the rule set
application in the result of a rule), the symbolic
treatment propagates itself along the branches of the
MOM tree.

4. APPLICATIONS

At the present time, RAMA can perform various
actions.
It is used for code generation purposes. The
generated code may be written in C/C++, Java, or
any other programming language. This code can be
generated for simulation purposes [6], for sizing
processes using optimization techniques [7], or any
other purpose.
RAMA is also used to split up mathematical
expressions into smaller ones, in order to reduce
parsing times, and compilation times of the
corresponding generated codes (for example in C
programming). It is also used to split up complex
expressions into their real and imaginary parts.
Finally, RAMA also derivates or differentiates
mathematical expressions.

4.1. Differentiation

The differentiation of mathematical expressions is
based on a rule set containing 25 rules for the
operators, the usual mathematical functions, the

<RAMA:RULE>
<RAMA:CONTEXT priority="2">

<RAMA:MOM name="tan"/>
</RAMA:CONTEXT>
<RAMA:RESULT>

<RAMA:MOM name="*" type="operator">
<RAMA:apply-ruleset name="differentiate" select="self/child::*"/>
<RAMA:MOM name="+" type="operator">

<RAMA:MOM name="1" type="constant"/>
<RAMA:MOM name="pow" type="function">

<RAMA:copy select="self"/>
<RAMA:MOM name="2" type="constant"/>

</RAMA:MOM>
</RAMA:MOM>

</RAMA:MOM>
</RAMA:RESULT>

</RAMA:RULE>

variables and the constants. The computing time is
equivalent to Maple® one, but the memory
occupation is far lesser with RAMA. However, the
obtained expressions are not so simplified than with
tools like Maple. Mainly, factorization methods are
not applied.

4.2. Java and C Code Generation

By defining a dedicated rule set, it is possible to
transform the representation of an expression to be
compliant with a language. For example, RAMA is
used to perform such an operation in a tool called
MAEL [6] that produces JAVA and C code for
simulation processes and optimization processes.

4.3. Real And Imaginary Parts Of Expressions

RAMA can be used to perform any action that can
be described by a set of rules. Another action is the
separation of real and imaginary part from a
complex expression. At the present time, this
functionality is used in MAEL, and is described by
15 rules. Such an operation performed on 224
elementary expressions, has a lower cost than using
the functions of MAPLE software as an
independent process. However, as for
differentiation, the obtained expressions are not so
simplified than with tools like Maple.

5. CONCLUSION

At the present time, RAMA is used to performed
treatment on mathematical expressions. Extensions
to treat other structures which can be represented
through a tree, like algorithm, may be also possible.
The architecture of this tool is extensible to other
activities thanks to the use of structured
representations based on XML. Besides rules and
actions, it is possible to build checking process, i.e.
tests that are performed on a tree (e.g., to value the
degree of a polynomial expression).

6. REFERENCES

[1] Maple : http://www.maplesoft.com/
[2] Mathematica : http://www.wolfram.com
[3] J. Davenport, Y. Siret, E. Tournier, "Calcul
formel. Systèmes et algorithmes de manipulations
algébriques". Editions Masson 1993 275 pp.,
ISBN : 2 225 84200
[4] M. Gondran and M. Minoux. “Graphes et
algorithmes”. Eyrolles, Paris, 3rd edition, 1995.
[5] XPath, http://www.w3.org/TR/xpath
[6] Loïg Allain, Laurent Gerbaud, Ch. Van Der
Schaeghe, "Modeling electromechanical actuators
for simulation : MAEL performs model
capitalization and symbolic treatement", EPE’2003
(European conference on Power Electronics and

Applications), Toulouse, France, 2-4 September
2003
[7] Vincent Fischer, Laurent Gerbaud, Jean Bigeon,
"Solving ODE for Optimisation : specific use of the
Matrix Exponential Approach", OIPE'2002
(Optimization and Inverse Problem in
Electromagnetism), Lotz, Poland, 12-14 September
2002

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

