
DESIGN OF A MULTITHREADED PARALLEL MODEL FOR FIRE SPREAD

Eric Innocenti
Alexandre Muzy
Antoine Aiello

Jean-François Santucci

University of Corsica
SPE – UMR CNRS 6134

B.P. 52, Campus Grossetti
20250 Corti. FRANCE.

e-mail : ino@univ-corse.fr

 David R.C. HILL
ISIMA/LIMOS UMR CNRS 6158

Blaise Pascal University
Campus des Cézeaux BP 10125, 63177

Aubière Cedex France
e-mail : hill@isima.fr

KEYWORDS
Parallel simulation, fire modeling, DEVS formalism,
multicomponent formalism.

ABSTRACT

We present an approach allowing the simulation of fire spread
on parallel computers. The speedup obtained shows that the
technique used is efficient. Our algorithm is based on the DEVS
formalism for Discrete EVent Simulation. Two levels of
abstraction are considered: a low and a high level. The low level
takes into account particular conditions (vegetation, slope, wind,
etc.) through cellular independent components which have their
own states and behavior. The high level of abstraction considers
an area of land with a fire front as a whole unit that evolves in
time and space. Our design consists in proposing a
multicomponent model. A set of active elements is defined and
added to the multicomponent in order to improve the parallelism
and to limit computations. We develop a two levels parallel
approach. The first level, relying on fork() function calls, allows
portable placement parallelism on real processors. The second
level based on the parallelization of the active elements is
adapted for hyperthreading processors, which authorize
independent threads running at the same time. We use here
POSIX thread library. The full advantage of all available CPUs
and a significant speedup on shared memory multiprocessor
machines are obtained. Experiments and results are commented
on, in the last section.

1 INTRODUCTION

Computer simulation of fire spread involves spatial effects
that remain a challenging problem in terms of computation
time and memory, to the extent that we want to work with
large propagation areas. In addition, it is important to
provide decision-aid tools for fireman advisors, hence the
model is based on physics in order to obtain an acceptable
precision level [1].
In this paper, we expose a method able to simulate the fire
propagation on a two-dimensional area. This modeling
approach falls into the class of cellular propagation models
[2]. Our aim is to predict the position of the fire-front, but
with the help of physical equations and experimental
parameters [3]. The Multicomponent approach, the DEVS
formalism (Discrete EVent Simulation) and parallel
computing provide us with a basis to tackle the simulation
of large scale areas. This work is motivated by the

following observations: accurate fire simulation based
on physics is costly in computation time; taking into
account large areas requires a considerable amount of
memory not available on traditional computers; thus
many simulation models depend on a parallel
architecture.
Our answer to these issues consists in an original
parallel fire model which reduces considerably the
computations of cellular elements. In order to reach that
objective, a propagation plan is decomposed into
independent propagation domains which are computed
in processes. Each one is linked to a list of cells which
stores active component references, and thus we are
able to limit the computations to elements that change
their states. The set of active cells is distributed across
different threads of the processors. Computation is then
easily portable on parallel computers based on
hyperthreading processors and is limited to the fire
front. Moreover our model supports multiple
simultaneous fire fronts. Experiments show the
effectiveness of our approach both in terms of execution
time and domain size.
Another contribution of this work is the introduction of
a new fire spread approach, based on DEVS formalism
combined with the multicomponent model, allowing
two levels of abstraction. The parallel implementation
of the algorithm uses the fork() calls and the POSIX
threads library [4].

The paper is organized as follows. The next
section recalls the concepts and the formalisms used.
Section 3 describes in detail the simulation model
developed. Section 4 explains the DEVS simulator
implemented, the overall algorithm of the simulation is
described precisely. Section 5 describes the testbed we
used, including the results and discussion. Finally, the
achievements and limitations are summarized and the
directions of further investigations are given.

2. CONCEPTS AND FORMALISM

2.1. DEVS Formalism

Since the beginning of the 1970's, developing the
theoretical basis on discrete event dynamic system
modeling and simulation is an active research field.

Based on cellular automata, multicomponents are
intrinsically parallel, thus they can be implemented
efficiently onto parallel computers. In our case the
communication flow between processors is low due to
the regularity of the elements [6,7]. As stated previously
the implementation of the parallel features of our
algorithm will rely on fork and POSIX thread library
functions [4].

DEVS is an abstract universal formalism used for discrete
event modelling introduced by Bernard Zeigler. A basic
DEVS model is a structure:

DEVS=(XM, YM, S, δext, δint,λ, ta)

where

XM is the set of ports and input values
3. FIRE PROPAGATION MODEL YM is the set of ports and output values

S is the set of system's states
3.1 Physical modeling δext is the external transition function
 δint is the internal transition function
Before tackling the modeling, the phenomenon of the
combustion of a solid is first specified. If a solid
material is subjected to a quite important flow of heat, it
will deteriorate: this is the chemical process of
pyrolysis. Combustible gases are then delivered, the
resulting flame comes from their reaction in
stoechiometrical proportions, with the oxygen present in
the atmosphere. The flame obtained is quasi isobaric
and the reaction of combustion occurs in a narrow area
which can be likened to a surface. The energy released
by the pyrolysis is released in the atmosphere and also
carried towards inert combustibles. Thus, these radiative
and convective thermal transfers between the flame and
the solid as well as the heat conduction will keep the
fire spread going on.

λ is the output function
ta is the advance time function

The components of the model are described via the
descriptive variables, S representing the subset of state
variables. X is the subset of input variables and Y the
subset of output variables. The atomic models are
influenced by internal and external events. The external
events are generated on one of the input ports of an atomic
model; the internal events are programmed as a result of
the external events and imply the model response to the
outside. The atomic model activity is described by the
internal transition function δint, by the output function λ
and by the external transition function δext.. The reader
interested in more details will benefit from the new
reference book for DEVS [5].

2.2 Multicomponent Formalism

The modeling we consider has to take into account the
structural diversity of the medium as well as the behavioral
diversity of the various elements. In addition, the
modelling choices should also facilitate multiple fire front
and its parallelization. In order to reach these objectives,
we use the multicomponent specification system
introduced by Zeigler in [5].
A multicomponent is a structure: Figure 1: schematic representation of a fire front

MC=<T, X, Ω, Y, D, {Md}>, We use as the basis for propagation behavior a one

dimensional theoretical model, in which a second
dimension can be obtained using propagation
algorithms integrating empirically wind and slope [8].
Here, we consider fire spread within a 1 m² domain of
pine needles, without slope nor wind. The spread plan is
divided into elementary cells composing the ground and
the plants. The previously physical study made by
physicians of the University of Corsica allowed us to
define a system of differential equations in order to
describe the phenomenon [3].

where

 T is a time base,
 X is the input value set,
 Ω is the set of allowable input segments,
 Y is the output value set,
 D is the set of component references.
 For all d Є D,
 Md=<Qd, Ed, Id, ∆d, Λd>

In order to discretize the model, the method of finite
elements is used so as to make its application easier.
The domain considered is made up of 1 m² cells
uniformly distributed and a 0.01 s time step is used. The
resolution of the physical model, furnishes the
following algebraic equation:

is a component with
 Qd, is the set of states of the component d,
 Ed, is the set of its influencers,
 Id, is the set of its influencees,
 ∆d, is the state transition function of d,

 Λd, is the output function of d.

The principal assets of our model are: k
ji

k
vk

ji
k
ji

k
ji

k
ji

k
ji dT

t
cQbTbTaTaTT

ji
,

1

1,1,,1,1
1

,
,

+

++++=

+

+−+−
+

∂
∂σ

 (1)

• the multicomponent approach which allows us
to develop complex and accurate propagation
models,

where Ti,j is the temperature of one cell of the domain.

The coefficients a,b,c,d depend on the time step
and the size of cells. These coefficients are identified on
the basis of the experimental data of temperature according
to time. This equation represents the temperature curve of
a cell of the domain, as shown in figure 2. Once the
temperature Tig is reached, the combustion of cell starts
and finishes at temperature Tf .

• the use of multicomponents coupled with a set
of active cells which allows us to write easily
parallel algorithms and take full advantage of
shared memory multi-processor machines,

• the gain in time and memory requirements is
susbtantial,

• the portability on parallel environment is
facilitated.

 t (Ta, tig)

 Tf = 60 °C
 Tig = 300 °C

 T (Celsius)

 heating burnt burning

At low level, a component is defined as being a specific
address. A cell can access directly the state information
of its neighbor cardinal cells. This approach allows each
component to have its own set of states and a transition
function. The internal transition relies on two key
functions: updateActiveSetFunction() and
updatePropagationDomainFunction(). The first one is
responsible for updating the active cells and the second
transfers the modifications on the multicomponent
model using the addresses of the components. These
two important stages of the internal transition involve
many component function calls (∆d,Λd) that can be
executed in parallel.

Figure 2: Simplified curve for the temperature of a cell

Since the modeling is based on the physical equation (1), it
naturally makes us consider the spread domain as a
cellular domain. The space is divided into a set of cells,
each one with a temperature. Cell temperatures evolve
through the simulation and each cell receives heat from its
neighbors. A cell ignites when its temperature exceeds the
Tig threshold temperature. This approach will enable us to
deal more easily with non homogeneous domains simply
by changing the equation of an element. Consequently we
are able to define different behaviors depending on of the
elements of the domain.

In order to describe accurately the studied phenomenon,
the multicomponent system specification described above
is used because it is most suitable for the considered
system.

3.2 Multicomponent Model
 Figure 3: Schematic representation of the internal

transition. The computation is limited to the fire- front,
the set of active cells is partitioned in equal subsets and
each one is computed into a thread

The atomic DEVS model that is envisaged is a
multicomponent with an input port and an output port
associated to a set of active cells. The input port starts the
fire spread and the output port conveys the distribution of
the temperatures of cells when the multicomponent has
finished its internal transition (settlement of the
temperatures). Two abstraction levels are considered: a
high and a low level [9], the relation linking the two levels
being a composition. At high level, the evolution of the
front fire is governed by two transition functions; the
external transition function δext which updates the global
state variables; the internal transition function δint which
computes the active elements and updates the front fire.
The temporary set needed for intermediate calculations is
then reduced to a handful of elements.

In a basic approach, the internal transition function δint
had to pass through all the components [5]. This
algorithm includes the execution of their individual
output functions Λd, in order to define the output Y of
the multicomponent, and their local state transition
functions ∆d, in order to update their states.
At component level, the first optimization consists in
using a set of active cells (cells that must change their
states at the next simulation time). The computation is
then limited to the fire front components. Hence, this
approach imposes the redefinition of the list of the
active cells and for small domain sizes (less than 10 000
components in our case), component management
generates overheads much greater than the original

approach. However, the overheads in the case of large
scale domains are negligible.
The starting point of our second optimization is the set of
active cells described above. This set is divided into equal
subsets and each of them is placed into a thread. One
thread has to perform the output and the transition
functions of each cell of the subset and update the
component linked to the multicomponent. During
simulation the active cells are the most equitably packed.
All the active cells of the multicomponent are updated
synchronously; also we use synchronization routines to
build simulation results. The evolution of the states of the
active cells determines the global behavior.
At domain level, the optimization consists in decomposing
the propagation area in smallest domains of propagation.
Each one then constitutes an independent simulation
process which is attached to a physical processor.
The disadvantages of the approach followed here are
mainly memory and computation times overhead due to
the large number of active components. Of course, this
disadvantage is only present if a great part of the
components are active, which is very improbable.
A less than optimal decomposition at high level generates
bad active cells distribution that induces an imbalance in
the workload distribution to the processors and requires
some action, in order to rebalance the load over
processors. The solution lies in the development of an
efficient decomposition algorithm, which constitutes the
next stage of our work.
The major advantages of this approach are the following:
ability to compute multiple fire fronts, dynamic
assignment of pack of components to threads, possibility
to skip inactive components and last the solution retained
gives faster simulation time both on sequential and parallel
architectures. A transparent re-assignment of components
to processors is achieved and the full advantages of
hyperthreading processors, which authorize independent
threads running at the same time, are exploited.
During the simulation, components burnt do not evolve
any more. In this case, we remove the component from the
set of the active elements, thus reducing computing and
active list iterations. On the other hand, the course of the
simulation will also require creation of additional active
components due to the propagation of the front fire. Most
generally, active components management is a
combination of component removals on the one side and
component adjustments on the other, augmented with
packing and sending the cells and their states to another
processes.

4. SIMULATION ALGORITHM

The kernel of our algorithm is a discrete event simulator
based on the DEVS formalism. In order to apply this
formalism to fire spread, two states are defined: active and
passive. The overall propagation plan is divided into
propagation domains. This one is active when fire spreads,
passive if not. The propagation domain is considered as an
atomic DEVS model for the simulator. We create as many
processes as domains we considered. An event on their

input port turns them active and they turn passive when
they execute their internal transition. Each domain is
attached to a process.

The algorithm can be divided into four steps:
1. Set the initial conditions for all model elements,

and the initial bag of active cells.
2. Execute external transition.
3. Apply the internal transition function. We compute

the next state S of the model and new cells
(influencers) are added to it as it expands. The
propagation domain is updated.

4. While the final simulation time is not reached,
simulation back to step 3.

Events are represented through five messages which
will enable us to put the simulation forward within an
algorithm based on the DEVS formalism. The messages
management will be made thanks to a schedule of dates,
a clock guaranteeing the global time of the simulation as
far as the root coordinator is concerned. The different
types of exchanged messages will permit the pursuance
of the simulation till final time tf:
• (i,t)-message: is used to initialise the model with

the group of rounded down values chosen by the
user.

• (x,t)-message: this message is used when an
external event occurs on one of the input ports of
the model.

• (done,t)-message: is used to indicate that the model
has completed its task; it's a message of settlement.

• (*,t)-message: indicates a state change of the
model, due to an internal event.

• (y,t)-message: indicates the emission of an output
event.

The atomic model is a multicomponent with input and
output ports and a set of actives cells. The input port
starts the fire spread and the output port conveys the
distribution of the different temperatures of the cells
when the multicomponent has finished its internal
transition. As depicted in algorithm 1, the simulator
uses two temporal variables: tlast and tnext. The first one
serves to store the simulation time once the last event
has occurred and the second one serves to store the
scheduling time of the next event.

DEVS simulator
Variables
 tlast , tnext

DEVS // associated model

Switch (typeMessage)

 Case ‘x’ :
 If (tlast ≤ t ≤ tnext) Then
 e = t - tlast
 δ (x,t-message) ext

 tlast = t
 tnext = tlast+ta(s)
 send (done,t)-message
 Else
 Error« Bad synchronisation »
 End If
 Fin Case

5. RESULTS AND COMMENTS
 Case ‘*’ :
 If t <> tnext Then We show here the experimental results by using the

approach presented above. The experiment consists in a
homogenous multiple point lighting. To simplify the
analysis of the results, the burnt space is decomposed in
equal propagation domains. Each domain consists in a
multicomponent where each component in the matrix
represents a square area of land.

 Error« Bad synchronisation »
 Else
 Y = λ(S)
 send (y,t)-message
 δint()
 tlast = t
 tnext = tlast+ta(s)
 send (done,t)-message

 End If
 End Case

End Case

End DEVS Simulator

Algorithm 1: DEVS simulator

The next event time tnext is sent to the parent coordinator in
order to permit a good synchronization of the events. The
root coordinator implements the loop dedicated to the
whole simulation. It distributes the tasks corresponding to
the events scheduled to its direct subordinate processors.
The simulation length is easily computed from the tfinal
time which is required from the user; the root coordinator
simulates the propagation until the tfinal time is reached.

DEVS root coordinator
Variables
 tsim // current time of simulation
 tfinal // final time of simulation
Simulator // direct subordinate simulator

While ((Scheduler Not Empty) and (tfinal<>t))
 // reading the first scheduler message
 Scheduler.ReadMessage()

Figure 4: Four snapshots of the fire spread simulation in
a multicomponent

Evolution time of running the fire model on

various numbered processes

0

500

1000

1500

2000

2500

1 2 4 8

Number of processes

Si
m

ul
at

io
n

tim
e

(s
)

5 000 steps
25130 AC

15 000 steps
63 626 AC

Figure 5: Simulation time for two experiments of
simulation on various numbered processes. The maxima

of active components reached are indicated

 Switch (typeMessage)

 Case ‘done’ :
 tsim = t
 If (t < t)Then sim final

 send (*,t)-message
 End IF
 End Case

 Case ‘y’ :
 Save_State()
 End Case

 Case ‘i’ :
 // the model will evolve
 // until
 // time t of(i,t)- message
 tfinal = t
 //model initialisation
 init_Model()
 //Start simulation
 send(x,t0)-message
 End Case

The measurements were obtained running on a bi-
processor Intel Pentium 2.4 Ghz XEON distributed
memory computer. We measured the time cost of
running the fire model on various numbered processes
and computed the speedups that we obtained.

 End Switch

End While

End DEVS root Coordinator

Algorithm 2: DEVS root coordinator

We run the simulation scheme, described above, on the
different processors of the parallel computer.

1000 X 1000 components (63 626 active
elements), 15 000 simulation steps

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1 2 4 8

Processes

Sp
ee

du
p Optimal

speedup

Experimental
speedup

Figure 6: Speedup obtained for 150 s simulation time on a
DELL XEON Pentium biprocessors

Simulation times are not directly dependent on the size of
the domain, they depend on the number of active cells and
processors, and the results showed in figure 6, compare
them with the line y = x which we define to be the optimal
speedup.

6. CONCLUSION

We have developed a new technique for simulating fire
propagation on large domains with DEVS formalism,
multicomponent modeling and parallel computation. An
efficient model and a solution optimized for parallel
simulation of fire spread are presented. The fire
propagation is based on physical laws and a set of active
cells is used to manage the fire-front. The DEVS simulator
is based on a lattice of cells described as a
multicomponent. This model can be applied to large areas
and more complex configurations. The use of parallel
techniques allowed us to obtain satisfactory computation
time. In addition, the use of the multicomponent approach
allowed precise description of the behavior of each cell.
Our model also supports multiple simultaneous fire fronts.
This approach does not require any special training in
parallel computing from the end-user. The parallel
simulation framework introduced, intended to simplify the
parallelization of complex simulation models based on a

lattice of components. The practical aspect lies in the
fact that parallelization difficulties are hidden by the
model, enabling an efficient and accurate simulation
exploiting computational concurrency at a minimum
cost. In order to increase the number of processors, that
are generally limited on SMP machines, we plan to
work on an adaptation of this algorithm for the
execution through a cluster of workstations.

7. REFERENCES

[1] P. Eklund, S. Kirkby, J. Mann. 1999. ''A Distributed
Spatial Architecture for Bush Fire Simulation'',
Transactions on GIS, Blackwell Publishers Oxford,
Vol. 3, No 3.

[2] M. S. Veach, P. Coddington, G.C. Fox. 1994. ''BURN:
A Simulation of Forest Fire Propagation.''. Available
online from http://citeseer.nj.nec.com/cs.

[3] J.H. Balbi and P.A. Santoni. 1998. ''Dynamic
modelling of fire spread across a fuel bed'', Int. J.
Wildland Fire, pp. 275-284.

[4] F. Mueller. 1993. ''A Library Implementation of POSIX
Threads under UNIX'' in Proceedings of the USENIX
Conference, Jan, pp. 29-41.

[5] B.P. Zeigler, H. Praehofer and T.G. Kim. 2000.
''Theory of modelling and simulation'', 2nd Edition,
Academic Press.

[6] D. Talia. 2000. ''Solving Problems on Parallel
Computers by Cellular Programming'', IPDPS
Workshops,Springer Verlag Heidelberg, pp. 595-603.

[7] G. Spezzano, D. Talia, 1999. '' Programming cellular
automata algorithms on parallel computers'' in Future
Generation Computer Systems, No 16, pp. 203-216.

[8] E. Pastor, L. Zàrate, E. Planas, J. Arnaldos. 2003.
''Mathematical models and calculation systems for the
study of wildland fire behaviour'', Progress in Energy
and Combustion Science, No 29, pp. 139-153.

[9] J. Jorba, T. Margalef, E. Luque, J.C.S. Andre, D.X.
Viegas. 1999. ''Parallel Approach to the Simulation of
Forest Fire Propagation'', Umwelt-informatik-zwischen
Theorie und Industrie-anwendung Umweltinformatik'
99. Metropolis-Verlag, Germany, pp. 69-81.

http://citeseer.nj.nec.com/cs

	1 INTRODUCTION
	2. CONCEPTS AND FORMALISM
	3. FIRE PROPAGATION MODEL
	Figure 1: schematic representation of a fire front

	4. SIMULATION ALGORITHM
	
	
	Algorithm 2: DEVS root coordinator

	5. RESULTS AND COMMENTS
	6. CONCLUSION
	7. REFERENCES

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

