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ABSTRACT 
 
We present an approach allowing the simulation of fire spread 
on parallel computers. The speedup obtained shows that the 
technique used is efficient. Our algorithm is based on the DEVS 
formalism for Discrete EVent Simulation. Two levels of 
abstraction are considered: a low and a high level. The low level 
takes into account particular conditions (vegetation, slope, wind, 
etc.) through cellular independent components which have their 
own states and behavior. The high level of abstraction considers 
an area of land with a fire front as a whole unit that evolves in 
time and space. Our design consists in proposing a 
multicomponent model. A set of active elements is defined and 
added to the multicomponent in order to improve the parallelism 
and to limit computations. We develop a two levels parallel 
approach. The first level, relying on fork() function calls, allows 
portable placement parallelism on real processors. The second 
level based on the parallelization of the active elements is 
adapted for hyperthreading processors, which authorize 
independent threads running at the same time. We use here 
POSIX thread library. The full advantage of all available CPUs 
and a significant speedup on shared memory multiprocessor 
machines are obtained. Experiments and results are commented 
on, in the last section. 

1 INTRODUCTION 

Computer simulation of fire spread involves spatial effects 
that remain a challenging problem in terms of computation 
time and memory, to the extent that we want to work with 
large propagation areas. In addition, it is important to 
provide decision-aid tools for fireman advisors, hence the 
model is based on physics in order to obtain an acceptable 
precision level [1]. 
In this paper, we expose a method able to simulate the fire 
propagation on a two-dimensional area. This modeling 
approach falls into the class of cellular propagation models 
[2]. Our aim is to predict the position of the fire-front, but 
with the help of physical equations and experimental 
parameters [3]. The Multicomponent approach, the DEVS 
formalism (Discrete EVent Simulation) and parallel 
computing provide us with a basis to tackle the simulation 
of large scale areas. This work is motivated by the 

following observations: accurate fire simulation based 
on physics is costly in computation time; taking into 
account large areas requires a considerable amount of 
memory not available on traditional computers; thus 
many simulation models depend on a parallel 
architecture.  
Our answer to these issues consists in an original 
parallel fire model which reduces considerably the 
computations of cellular elements. In order to reach that 
objective, a propagation plan is decomposed into 
independent propagation domains which are computed 
in processes. Each one is linked to a list of cells which 
stores active component references, and thus we are 
able to limit the computations to elements that change 
their states. The set of active cells is distributed across 
different threads of the processors. Computation is then 
easily portable on parallel computers based on 
hyperthreading processors and is limited to the fire 
front. Moreover our model supports multiple 
simultaneous fire fronts. Experiments show the 
effectiveness of our approach both in terms of execution 
time and domain size. 
Another contribution of this work is the introduction of 
a new fire spread approach, based on DEVS formalism 
combined with the multicomponent model, allowing 
two levels of abstraction. The parallel implementation 
of the algorithm uses the fork() calls and the POSIX 
threads library [4]. 

The paper is organized as follows. The next 
section recalls the concepts and the formalisms used. 
Section 3 describes in detail the simulation model 
developed. Section 4 explains the DEVS simulator 
implemented, the overall algorithm of the simulation is 
described precisely. Section 5 describes the testbed we 
used, including the results and discussion. Finally, the 
achievements and limitations are summarized and the 
directions of further investigations are given. 

2. CONCEPTS AND FORMALISM 

2.1. DEVS Formalism 
  
Since the beginning of the 1970's, developing the 
theoretical basis on discrete event dynamic system 
modeling and simulation is an active research field. 



Based on cellular automata, multicomponents are 
intrinsically parallel, thus they can be implemented 
efficiently onto parallel computers. In our case the 
communication flow between processors is low due to 
the regularity of the elements [6,7]. As stated previously 
the implementation of the parallel features of our 
algorithm will rely on fork and POSIX thread library 
functions [4]. 

DEVS is an abstract universal formalism used for discrete 
event modelling introduced by Bernard Zeigler. A basic 
DEVS model is a structure: 
 
DEVS=(XM, YM, S, δext, δint,λ, ta) 
  
where  
 

XM is the set of ports and input values 
3. FIRE PROPAGATION MODEL YM is the set of ports and output values 

S is the set of system's states 
3.1 Physical modeling δext is the external transition function 
 δint is the internal transition function 
Before tackling the modeling, the phenomenon of the 
combustion of a solid is first specified. If a solid 
material is subjected to a quite important flow of heat, it 
will deteriorate: this is the chemical process of 
pyrolysis. Combustible gases are then delivered, the 
resulting flame comes from their reaction in 
stoechiometrical proportions, with the oxygen present in 
the atmosphere. The flame obtained is quasi isobaric 
and the reaction of combustion occurs in a narrow area 
which can be likened to a surface. The energy released 
by the pyrolysis is released in the atmosphere and also 
carried towards inert combustibles. Thus, these radiative 
and convective thermal transfers between the flame and 
the solid as well as the heat conduction will keep the 
fire spread going on. 

λ is the output function 
ta is the advance time function 

  
The components of the model are described via the 
descriptive variables, S representing the subset of state 
variables. X is the subset of input variables and Y the 
subset of output variables. The atomic models are 
influenced by internal and external events. The external 
events are generated on one of the input ports of an atomic 
model; the internal events are programmed as a result of 
the external events and imply the model response to the 
outside. The atomic model activity is described by the 
internal transition function δint, by the output function λ 
and by the external transition function δext.. The reader 
interested in more details will benefit from the new 
reference book for DEVS [5].  

 

  
2.2 Multicomponent Formalism 
  
The modeling we consider has to take into account the 
structural diversity of the medium as well as the behavioral 
diversity of the various elements. In addition, the 
modelling choices should also facilitate multiple fire front 
and its parallelization. In order to reach these objectives, 
we use the multicomponent specification system 
introduced by Zeigler in [5]. 
A multicomponent is a structure: Figure 1: schematic representation of a fire front 
  
MC=<T, X, Ω, Y, D, {Md}>, We use as the basis for propagation behavior a one 

dimensional theoretical model, in which a second 
dimension can be obtained using propagation 
algorithms integrating empirically wind and slope [8]. 
Here, we consider fire spread within a 1 m² domain of 
pine needles, without slope nor wind. The spread plan is 
divided into elementary cells composing the ground and 
the plants. The previously physical study made by 
physicians of the University of Corsica allowed us to 
define a system of differential equations in order to 
describe the phenomenon [3]. 

 
where  
 
  T is a time base, 
  X is the input value set, 
  Ω is the set of allowable input segments, 
  Y is the output value set, 
  D is the set of component references. 
  For all d Є D, 
  Md=<Qd, Ed, Id, ∆d, Λd> 

In order to discretize the model, the method of finite 
elements is used so as to make its application easier. 
The domain considered is made up of 1 m² cells 
uniformly distributed and a 0.01 s time step is used. The 
resolution of the physical model, furnishes the 
following algebraic equation: 

 
is a component with 
  Qd, is the set of states of the component d, 
  Ed, is the set of its influencers, 
  Id, is the set of its influencees, 
  ∆d, is the state transition function of d, 

   Λd, is the output function of d. 
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 (1)   

• the multicomponent approach which allows us 
to develop complex and accurate propagation 
models, 

where Ti,j is the temperature of one cell of the domain. 
 

The coefficients a,b,c,d depend on the time step 
and the size of cells. These coefficients are identified on 
the basis of the experimental data of temperature according 
to time. This equation represents the temperature curve of 
a cell of the domain, as shown in figure 2. Once the 
temperature Tig is reached, the combustion of cell starts 
and finishes at temperature Tf . 

• the use of multicomponents coupled with a set 
of active cells which allows us to write easily 
parallel algorithms and take full advantage of 
shared memory multi-processor machines, 

• the gain in time and memory requirements is 
susbtantial, 

• the portability on parallel environment is 
facilitated. 

 
  

 t  (Ta, tig) 

 Tf  = 60 °C 
 Tig = 300 °C 

 T (Celsius) 

  heating   burnt   burning 

  
At low level, a component is defined as being a specific 
address. A cell can access directly the state information 
of its neighbor cardinal cells. This approach allows each 
component to have its own set of states and a transition 
function. The internal transition relies on two key 
functions: updateActiveSetFunction() and 
updatePropagationDomainFunction(). The first one is 
responsible for updating the active cells and the second 
transfers the modifications on the multicomponent 
model using the addresses of the components. These 
two important stages of the internal transition involve 
many component function calls (∆d,Λd) that can be 
executed in parallel.  

 
 
 
 
 
 
 

Figure 2: Simplified curve for the temperature of a cell 
 
Since the modeling is based on the physical equation (1), it 
naturally makes us consider the spread domain as a 
cellular domain. The space is divided into a set of cells, 
each one with a temperature. Cell temperatures evolve 
through the simulation and each cell receives heat from its 
neighbors. A cell ignites when its temperature exceeds the 
Tig threshold temperature. This approach will enable us to 
deal more easily with non homogeneous domains simply 
by changing the equation of an element. Consequently we 
are able to define different behaviors depending on of the 
elements of the domain.  

 

 

In order to describe accurately the studied phenomenon, 
the multicomponent system specification described above 
is used because it is most suitable for the considered 
system. 
 
3.2 Multicomponent Model  
  Figure 3:  Schematic representation of the internal 

transition. The computation is limited to the fire- front, 
the set of active cells is partitioned in equal subsets and 
each one is computed into a thread 

The atomic DEVS model that is envisaged is a 
multicomponent with an input port and an output port 
associated to a set of active cells. The input port starts the 
fire spread and the output port conveys the distribution of 
the temperatures of cells when the multicomponent has 
finished its internal transition (settlement of the 
temperatures). Two abstraction levels are considered: a 
high and a low level [9], the relation linking the two levels 
being a composition. At high level, the evolution of the 
front fire is governed by two transition functions; the 
external transition function δext which updates the global 
state variables; the internal transition function δint which 
computes the active elements and updates the front fire. 
The temporary set needed for intermediate calculations is 
then reduced to a handful of elements. 

  
In a basic approach, the internal transition function δint 
had to pass through all the components [5]. This 
algorithm includes the execution of their individual 
output functions Λd, in order to define the output Y of 
the multicomponent, and their local state transition 
functions ∆d, in order to update their states.  
At component level, the first optimization consists in 
using a set of active cells (cells that must change their 
states at the next simulation time).  The computation is 
then limited to the fire front components. Hence, this 
approach imposes the redefinition of the list of the 
active cells and for small domain sizes (less than 10 000 
components in our case), component management 
generates overheads much greater than the original 



approach. However, the overheads in the case of large 
scale domains are negligible.   
The starting point of our second optimization is the set of 
active cells described above. This set is divided into equal 
subsets and each of them is placed into a thread. One 
thread has to perform the output and the transition 
functions of each cell of the subset and update the 
component linked to the multicomponent. During 
simulation the active cells are the most equitably packed. 
All the active cells of the multicomponent are updated 
synchronously; also we use synchronization routines to 
build simulation results. The evolution of the states of the 
active cells determines the global behavior.  
At domain level, the optimization consists in decomposing 
the propagation area in smallest domains of propagation. 
Each one then constitutes an independent simulation 
process which is attached to a physical processor. 
The disadvantages of the approach followed here are 
mainly memory and computation times overhead due to 
the large number of active components. Of course, this 
disadvantage is only present if a great part of the 
components are active, which is very improbable. 
A less than optimal decomposition at high level generates 
bad active cells distribution that induces an imbalance in 
the workload distribution to the processors and requires 
some action, in order to rebalance the load over 
processors. The solution lies in the development of an 
efficient decomposition algorithm, which constitutes the 
next stage of our work.  
The major advantages of this approach are the following: 
ability to compute multiple fire fronts, dynamic 
assignment of pack of components to threads, possibility 
to skip inactive components and last the solution retained 
gives faster simulation time both on sequential and parallel 
architectures.  A transparent re-assignment of components 
to processors is achieved and the full advantages of 
hyperthreading processors, which authorize independent 
threads running at the same time, are exploited.  
During the simulation, components burnt do not evolve 
any more. In this case, we remove the component from the 
set of the active elements, thus reducing computing and 
active list iterations. On the other hand, the course of the 
simulation will also require creation of additional active 
components due to the propagation of the front fire. Most 
generally, active components management is a 
combination of component removals on the one side and 
component adjustments on the other, augmented with 
packing and sending the cells and their states to another 
processes.  

4. SIMULATION ALGORITHM 

The kernel of our algorithm is a discrete event simulator 
based on the DEVS formalism. In order to apply this 
formalism to fire spread, two states are defined: active and 
passive. The overall propagation plan is divided into 
propagation domains. This one is active when fire spreads, 
passive if not. The propagation domain is considered as an 
atomic DEVS model for the simulator. We create as many 
processes as domains we considered. An event on their 

input port turns them active and they turn passive when 
they execute their internal transition. Each domain is 
attached to a process. 
 
The algorithm can be divided into four steps: 
1. Set the initial conditions for all model elements, 

and the initial bag of active cells. 
2. Execute external transition. 
3. Apply the internal transition function. We compute 

the next state S of the model and new cells 
(influencers) are added to it as it expands. The 
propagation domain is updated. 

4. While the final simulation time is not reached, 
simulation back to step 3. 

Events are represented through five messages which 
will enable us to put the simulation forward within an 
algorithm based on the DEVS formalism. The messages 
management will be made thanks to a schedule of dates, 
a clock guaranteeing the global time of the simulation as 
far as the root coordinator is concerned. The different 
types of exchanged messages will permit the pursuance 
of the simulation till final time tf: 
• (i,t)-message: is used to initialise the model with 

the group of rounded down values chosen by the 
user. 

• (x,t)-message: this message is used when an 
external event occurs on one of the input ports of 
the model. 

• (done,t)-message: is used to indicate that the model 
has completed its task; it's a message of settlement. 

• (*,t)-message: indicates a state change of the 
model, due to an internal event. 

• (y,t)-message: indicates the emission of an output 
event. 

The atomic model is a multicomponent with input and 
output ports and a set of actives cells. The input port 
starts the fire spread and the output port conveys the 
distribution of the different temperatures of the cells 
when the multicomponent has finished its internal 
transition. As depicted in algorithm 1, the simulator 
uses two temporal variables: tlast and tnext. The first one 
serves to store the simulation time once the last event 
has occurred and the second one serves to store the 
scheduling time of the next event. 
 
DEVS simulator 
Variables 
 tlast , tnext 

 

DEVS  // associated model 
 
Switch (typeMessage) 
 
 Case ‘x’ : 
  If (tlast ≤ t ≤ tnext) Then 
   e = t - tlast 
   δ (x,t-message)  ext

   tlast = t 
   tnext = tlast+ta(s)  
   send (done,t)-message 
  Else 
   Error« Bad synchronisation » 
  End If 
 Fin Case 



5. RESULTS AND COMMENTS  
 Case ‘*’ : 
  If t <> tnext Then We show here the experimental results by using the 

approach presented above. The experiment consists in a 
homogenous multiple point lighting. To simplify the 
analysis of the results, the burnt space is decomposed in 
equal propagation domains. Each domain consists in a 
multicomponent where each component in the matrix 
represents a square area of land.  

   Error« Bad synchronisation » 
  Else 
   Y = λ(S) 
   send (y,t)-message 
   δint()   
   tlast = t 
   tnext = tlast+ta(s) 
   send (done,t)-message 

   End If 
 End Case 

 

End Case 
 
End DEVS Simulator 

Algorithm 1: DEVS simulator 
 

The next event time tnext is sent to the parent coordinator in 
order to permit a good synchronization of the events. The 
root coordinator implements the loop dedicated to the 
whole simulation. It distributes the tasks corresponding to 
the events scheduled to its direct subordinate processors. 
The simulation length is easily computed from the tfinal 
time which is required from the user; the root coordinator 
simulates the propagation until the tfinal time is reached. 
 
DEVS root coordinator 
Variables 
 tsim  //  current time of simulation 
 tfinal //  final time of simulation 
Simulator // direct subordinate simulator 
 
While ((Scheduler Not Empty) and (tfinal<>t)) 
 // reading the first scheduler message  
  Scheduler.ReadMessage() 

Figure 4: Four snapshots of the fire spread simulation in 
a multicomponent 
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Figure 5: Simulation time for two experiments of 
simulation on various numbered processes. The maxima 

of active components reached are indicated 

 Switch (typeMessage) 
 
  Case ‘done’ : 
   tsim = t 
   If (t  < t )Then sim final

    send (*,t)-message 
   End IF 
  End Case 
 
  Case ‘y’ : 
   Save_State() 
  End Case 
   
  Case ‘i’ : 
   // the model will evolve 
   // until 
   // time t of(i,t)- message 
   tfinal = t  
   //model initialisation 
   init_Model()    
   //Start simulation 
   send(x,t0)-message  
  End Case 

   
The measurements were obtained running on a bi-
processor Intel Pentium 2.4 Ghz XEON distributed 
memory computer. We measured the time cost of 
running the fire model on various numbered processes 
and computed the speedups that we obtained.  

 End Switch 
 
End While 
 
End DEVS root Coordinator 

Algorithm 2: DEVS root coordinator 
 
We run the simulation scheme, described above, on the 
different processors of the parallel computer.  



1000 X 1000 components (63 626 active 
elements), 15 000 simulation steps
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Figure 6: Speedup obtained for 150 s simulation time on a 
DELL XEON Pentium biprocessors 

 
Simulation times are not directly dependent on the size of 
the domain, they depend on the number of active cells and 
processors, and the results showed in figure 6, compare 
them with the line y = x which we define to be the optimal 
speedup.    

6. CONCLUSION 

We have developed a new technique for simulating fire 
propagation on large domains with DEVS formalism, 
multicomponent modeling and parallel computation. An 
efficient model and a solution optimized for parallel 
simulation of fire spread are presented. The fire 
propagation is based on physical laws and a set of active 
cells is used to manage the fire-front. The DEVS simulator 
is based on a lattice of cells described as a 
multicomponent. This model can be applied to large areas 
and more complex configurations. The use of parallel 
techniques allowed us to obtain satisfactory computation 
time. In addition, the use of the multicomponent approach 
allowed precise description of the behavior of each cell. 
Our model also supports multiple simultaneous fire fronts. 
This approach does not require any special training in 
parallel computing from the end-user. The parallel 
simulation framework introduced, intended to simplify the 
parallelization of complex simulation models based on a 

lattice of components. The practical aspect lies in the 
fact that parallelization difficulties are hidden by the 
model, enabling an efficient and accurate simulation 
exploiting computational concurrency at a minimum 
cost. In order to increase the number of processors, that 
are generally limited on SMP machines, we plan to 
work on an adaptation of this algorithm for the 
execution through a cluster of workstations.  
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