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ABSTRACT  

In multi-agent (multi-robot) environment each agent tries 
to reach its own goal and it implies that in most cases the 
agent goals conflict. Under some assumptions such 
problems can be modelled as a STRIPS system (for 
instance Block World environment) with one initial state 
and alternative of goal states. If STRIPS planning problem 
is invertible then it is possible to apply machinery for 
planning in the presence of incomplete information to 
solve the inverted problem and then to find a solution for 
the original problem. In the paper we propose the planning 
algorithm that solves problem described above and, based 
on known results, we analyse its computational 
complexity. 
 
INTRODUCTION 

In multi-agent (multi-robot) environment each agent tries 
to achieve its own goal (Boutilier and Brafman 2001, 
Kraus et al. 1998). It leads to complications in problem 
modelling and searching for solution: in most cases agent 
goals are conflicting, agents have usually different 
capabilities and goal preferences, agents interact with 
problem environment simultaneously. 
 
In this research problem environment was modelled as 
Block World with STRIPS representation. This domain is 
often used to model planning problems (Boutilier and 
Brafman 2001, Kraus et al. 1998, Smith and Weld 1998, 
Galuszka and Swierniak 2001) because of complex 
actions definition and simple physical interpretation. 
Starting from 1970s STRIPS formalism (Nilson 1980) 
seems to be the most popular for planning problems 
(Weld 1999). Planning problems algorithms usually are at 
least NP- hard, even in Block World environment (here 
the problem of optimal planning is NP-complete). 
 

Block World today is stated an experimentation 
benchmark for planning algorithms (Howe and Dahlman 
2002). Also more realistic situations can be presented as 
Block World problems, where moving blocks correspond 
to moving different objects like packages, trucks and 
planes (Slaney and Thiebaux 2001). The case of Block 
World problem where the table has a limited capacity 
corresponds to a container loading problem (Slavin 1996). 
 

PROBLEM DEFINITION 

We focus on the following situation: 
- in the initial state there are a finite number of 

blocks and a table with unlimited place; 
- two (or, in general case, more) robots want to 

rebuilt the initial state, each in its own way (each 
robot wants to achieve its own desired goal 
situation); 

- goal of each robot consists of subgoals; 
- each subgoal has its preference (subgoals are 

more or less important for robots); 
- robots have different capabilities (i.e. each robot 

is not able to move all blocks); 
- robots can not cooperate (this assumption is 

justified in the case where in the environment the 
communication is not allowed or communication 
equipement is broken down).   

 
We are interested in the following two problems:  

- to find a solution for above situation; 
- to analyse computational complexity of searching 

for this solution. 
 
METHOD OF FINDING A SOLUTION 

The problem where there are some possible initial states 
and one goal state is called problem of planning in the 
presence of incompleteness. The inverted problem is the 
situation with one initial state and more possible goal 
states. It corresponds to multi-robot Block World problem 
where each robot wants to achieve its own goal. If we are 
able to find a plan for problem of planning in the presence 



of incompleteness, then it is possible to extract solution 
for multi-agent problem. 
 
Below we define STRIPS System, invertible planning 
problem and inverse operators. 
 
Strips system 

In general, STRIPS system is represented by four lists (C; 
O; I; G) (Bylander 1994, Nilson 1980): 
- a finite set of ground atomic formulas (C), called 
conditions; 
- a finite set of operators (O); 
- a finite set of predicates that denotes initial state (I); 
- a finite set of predicates that denotes goal state (G). 
 
Initial state describes physical configuration of the blocks. 
Description should be complete i.e. should deal with every 
true predicate corresponding to the state. Goal state is a 
conjunction of predicates. In multi-agent environment 
each agent defines own goal. This description does not 
need to be complete. The algorithm results in an ordered 
set of operators which transforms an initial state into a 
goal state.  
 
Operators O in STRIPS representation consist of three 
sublists: a precondition list (pre), a delete list (add) and an 
add list (del). Formally an operator Oo ∈  takes the form 
pre(o) → add(o), del(o). The precondition list is a set of 
predicates that must be satisfied in world-state to perform 
this operator. The delete list is a set of predicates that stay 
false after performing the operator and the add list is a set 
that stay true. Two last lists show effects of operator 
performing in problem state. Following (Koehler and 
Hoffmann 2000) the set of actions in a plan is denoted by 
PO. 
 
It is assumed that agents can have different capabilities 
(i.e. can deal with limited problem elements) and no 
negotiations are allowed. No negotiation assumption is 
satisfied in all situations where communication between 
agents is not allowed by problem environment or 
communication system fails. The case with negotiation is 
described for instance in (Kraus et al. 1998). 
 
Goal preferences are also considered. We will understand 
the profit as a sum of preferences of goals being satisfied.  
 
Invertible Planning Problem  
Definition of Invertible Planning Problem (Koehler and 
Hoffmann 2000) The problem (C, O, I, G) is called 
invertible if and only if 
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where  

 
Result( S, <>) = S, 
Result( S, <o>) = (S ∪  add(o)) \ del(o)  if  pre(o) ⊆  S , 
      S  in the opposite case, 
Result( S, <o1, o2,....., on>) = Result( Result( S, <o1>), 
<o2,...., on>), 
 

and 
O

P is called an inverted plan. 
 
Inverse Operator  
Definition of Inverse Operator (Koehler and Hoffmann 
2000). An operator Oo ∈  is called inverse if and only if it 
has the form )(),()( odeloaddopre →  and satisfies the 
conditions: 
 
1. )(\)()()( odeloaddopreopre ∪⊆  
2. )()( odeloadd =  
3. )()( oaddodel = . 
 
Under closed world assumption condition applying an 
inverse operator leads back to previous state. It is proved 
that if there is an inverse operator for each operator, then 
the problem is invertible. 
 
There are assumed four classical operators in Block World 
(Nilson 1980). The only difference is that operators stack 
and unstack precise only the block that is currently 
transformed (i.e. do not precise on which block is stacked 
a transformed blocks and from which block is unstacked a 
transformed block):  
 
- pickup(x) - block x is picked up from the table; 

precondition list & delete list:  
ontable(x), clear(x), handempty 

add list: holding(x) 
- putdown(x) - block x is put down on the table; 

precondition list & delete list: holding(x) 
add list: ontable(x), clear(x), handempty 

- stack(x) - block x is stacked on any block y; 
precondition list & delete list:  
holding(x), clear(y) 
add list: handempty, on(x,y), clear(x) 

- unstack(x) - block x is unstacked from any block y; 
precondition list & delete list:  
 handempty, clear(x), on(x,y) 
add list: holding(x), clear(y). 

 
It is easy to see that unstack is an inverse operator for 
stack and pickup is an inverse operator for putdown. We 
have defined Block World as an invertible planning 
problem because it allows to apply planning in the 
presence of incompleteness methodology to search for 
solution of inverted multi-agent problem and then to 
extract solution for the right multi-agent problem. 



Plan in the presence of incompleteness as an inverted  
plan in multi-robot environment 

Algorithm of planning in the presence of incompleteness 
handle planning problems with uncertainty in the initial 
state (e.g. Weld et al. 1998). In this case the algorithm 
seeks to generate a robust plan by thinking over all 
possibilities. This approach is called Conformant planning 
(Smith and Weld 1998). Conformant planning algorithms 
develop non-conditional plans that do not rely on sensory 
information, but still succeed  no matter which of the 
allowed states the world is actually in. 
 
Simulation results 

Block world environment was implemented using PDDL 
language (Planning Domain Definition Language) 
extended for handling uncertainty in the initial state (Yale 
Center… 1998). Sensory Graphplan algorithm was used to 
solve block world problems with uncertainty in the initial 
state  
(www.cs.washington.edu/research/projects/www/sgp.html). 
Two different problems are presented below. In both cases 
2 robots are operating in the environment. In problem 1 
Robot 1 is capable of moving blocks A,B and C whereas 
robot 2 can move blocks D, E and F. In Problem 2 Robot 
1 is capable of moving blocks A, B, C and D whereas 
robot 2 can move blocks E, F, G and H. In both cases 
definitions of the operators are inverted (operator names 
are changed i.e. unstack for stack and pickup for 
putdown). It implies that the plan for the inverted problem 
is extract just by executing founded plan in the inverted 
order. In both cases agents goals are in conflict. The case 
when in multi-agent environment the goals do not conflict 
was explored in (Galuszka and Swierniak 2002). 
 
Problem 1. The initial state is presented on figure 1. The 
goal state of robot 1 is on figure 2 and the goal state of 
robot 2 is on figure 3.  
 
 
 
 
 

Figure 1: Initial state 
 
 
 
 
 
 
 
 
Figure 2: Desired goal state of robot 1 (the goal conflicts 
with the goal of robot 2) (each goal has its preference) 

 
 

 
 
 
 
 
 
 
Figure 3: Desired goal state of robot 2 (the goal conflicts 
with the goal of robot 1) (each goal has its preference) 

 
Solution to two-robot problem 1 (steps from 1 to 7): 
2 contexts 
step 7 - (((( STACK2  E))) 
step 6 -  ((( PICK-UP2  E)) (( STACK1  A))) 
step 5 -  ((( STACK2  D)) (( UNSTACK1  A))) 
step 4 -  ((( PICK-UP2  D)) (( STACK1  C))) 
step 3 -  ((( PUT-DOWN2  D)) (( UNSTACK1  C))) 
step 2 -  ((( PICK-UP2  D)) (( PUT-DOWN1  B))) 
step 1 - ((( UNSTACK1  B)))) 
 
Problem 2. The initial state is presented on figure 4. The 
goal state of robot 1 is on figure 5 and the goal state of 
robot 2 is on figure 6. 
 
 
 
 

Figure 4. Initial state for problem 2 
 
 
 
 
 
 
 
 
 
 
Figure 5: Desired goal state of robot 1 (the goal conflicts 
with the goal of robot 2) (each goal has its preference) 

 
 
 
 
 
 
 
 
 
 
Figure 6: Desired goal state of robot 2 (the goal conflicts 
with the goal of robot 1) (each goal has its preference) 
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Solution for this two-robot problem 2 (steps from 1 to 6): 
 
2 contexts 
step 6 - (((( STACK2  E)) (( STACK1  A))) 
step 5 - ((( PICK-UP2  E)) (( PICK-UP1  A))) 
step 4 - ((( STACK2  F)) (( STACK1  B))) 
step 3 - ((( PICK-UP2  F)) (( PICK-UP1  B))) 
step 2 - ((( STACK2  G)) (( STACK1  C))) 
step 1 - ((( PICK-UP2  G)) (( PICK-UP1  C)))) 
 
Both agents can apply the above-founded plan to satisfy 
their goals. However, when they are trying to achieve 
their goals simultaneously they are in conflict. Now we 
define the non-cooperative equilibrium (Nash 
equilibrium) [6] and indicate how the agents can 
maximise their profits (the sum of preferences of satisfied 
goals) by achieving non-cooperative (Nash) equilibrium. 
 
Non-cooperative equilibrium strategy 

For presented problem a plan exists only if operators stack 
and unstack have only 1 parameter so they do not precise 
from which and on which block is stacked or stacked out. 
It implies that both agents to reach theirs goals can apply 
the founded plan but not simultaneously. When the goals 
preferences are also considered then it is possible to use 
Nash equilibrium strategy to precise how to apply the plan 
simultaneously and maximise the profit (the sum of 
satisfied goals preferences). The analysis of the problem 
leads to two remarks: 
 
Remark 1. It is not always possible to find Nash strategy 
for defined problems and in general case it is depended on 
size of the problem.  
 
Remark 2. More precisely the Nash strategy (if exists) 
defines the equilibrium for the whole plan when the 
number of stack operators in founded plan is even for each 
agent (2 operators for each agent in problem 1). When this 
condition is not satisfied (3 operators for each agent in 
problem 2) then the Nash strategy defines equilibrium 
only for a part of the problem. 
 
The conflict between agents will be presented by a 
bimatrix game. Matrix A characterises the costs of the 
first agent (the profit with the negative sign), matrix B 
characterises the wastage of the second agent. We assume 
that agent 1 chooses rows and agent 2 chooses columns of 
the matrices. The agents are trying to minimise cost 
functions defined by matrices A = {aij} and B = {bij}.  
 
Definition of Nash equilibrium. The strategy {i0, j0} 
determines non-cooperative (Nash) equilibrium in 
bimatrix game (A,B) if the following inequalities are 
satisfied: 

a a

b b
i j ij

i j i j

o o o

o o o

≤

≤
 

for all  i = 1, 2... n,  j = 1, 2 ... m. 
 
Now we define the matrixes for problem 1. The strategies 
in matrices are corresponding to the plan that solves the 
problem 2. Agent 1 can stack block C either on B or F and 
block A on C or D whereas agent 2 can stack block D on 
B or F and block E on C or D. Values in matrices 
correspond to goal preferences (e.g. robot 1 stacks block 
A on C  and robot 2 block D on F then profit of robot 1 is 
5 – it satisfied 2 its subgoals - whereas profit of robot 2 is 
0 – it satisfied none of its subgoals). 
 

Table 1: Matrix A (profits of the first agent) 
 

1        2  stack D B  stack D F  stack E C  stack E D 
 stack C B 3 3+2 3 3+4 
 stack C F 0 2 0 4 
 stack A C 1 1+2 1 1+4 
 stack A D 0 2 0 4 

 
 

Table 2: Matrix B (profits of the second agent) 
 

1        2  stack D B  stack D F  stack E C  stack E D 
 stack C B 1 0 2 0 
 stack C F 1+3 3 2+3 3 
 stack A C 1 0 2 0 
 stack A D 1+4 4 2+4 4 

 
 

Table 3: Matrix A (costs of the first agent) 
 

 1        2  stack D B  stack D F  stack E C  stack E D 
 stack C B - 3 - 5 ( - 3 ) - 7 
 stack C F 0 - 2 0 - 4 
 stack A C - 1 - 3 - 1 - 5 
 stack A D 0 - 2 0 - 4 

 
 

Table 4: Matrix B (costs of the second agent) 
 

 1        2  stack D B  stack D F  stack E C  stack E D 
 stack C B - 1 0 ( - 2 ) 0 
 stack C F - 4 - 3 - 5 - 3 
 stack A C - 1 0 - 2 0 
 stack A D - 5 - 4 - 6 - 4 

 
In this game we found one strategy that satisfies non-
cooperative (Nash) equilibrium definition (in brackets). 
This strategy modifies the plan in such a way that agent 1 
should place block C on B and agent 2 should place block 



E on C. It leads to the situation when the final state for the 
problem 2 takes the form (figure 7). 
 
 
 
 
 
 
 
 

Figure 7: Final state for problem 2 comes from Nash 
equilibrium 

 
Finally, the profit of the first agent is now 3 + 2 = 5 and 
for the second agent 2 + 4 = 6.  
 
COMPUTATIONAL COMPLEXITY OF  
SEARCHING FOR THE SOLUTION 

In general planning with complete information is NP-
complete. Planning in the presence of incompleteness 
belongs to the next level in the hierarchy of completeness 
(Baral at al. 2000). A condition for ‘incomplete’ block 
world problems that reduced complexity of finding a plan 
to the class P will be shown. 
 
Non-optimal planning in Block World is easy (Gupta and 
Nau 1992, Bylander 1994). To analyse complexity in our 
case it is assumed that planning problems are limited to 
only completely decomposed initial stae (i.e. all blocks are 
on the table) as it is shown in the example 2. Then the 
inverted problem is to decompose all possible initial states 
(i.e. goal definition consists only of ‘on-table’ predicates). 
The number of possible initials corresponds to number of 
robots. So the inverted problem is planning in the 
presence of incompleteness.  
 
Now it wil be shown a class of ‘incomplete’ block world 
problems for which finding a plan is also easy. In this 
class each block has the same position in stack in each 
possible initial state. This class belongs to the same class 
of complexity as classical block world planning.  
 
To represent possible initial states of block world it will 
be used Hass Diagram (Gupta and Nau 1992). This 
diagram is a directed acyclic graph whose nodes are the 
blocks and arcs are from block x to y if and only if on(x,y) 
is in initial state. This diagram can be constructed in linear 
time (Gupta and Nau 1992). Since the number of possible 
initial states is bounded by number of robots then time 
necessary to built Hass diagram for all initial states is also 
linear.  
 
Next for each block in each possible initial state the 
position in stack is calculated using Hass diagrams. It 
corresponds to the problem of lenght of path in a acyclic 
graph. In the problem 2 block positions are: 

 
- for A and E – 3, 
- for F and B – 2, 
- for C and G – 1, 
- for D and H – 0. 

 
for two possible initial states. 
 
If each block has the same position in stack in each 
possible initial state then there exists the same plan for 
each agent that solves the problem of decomposing all 
initials. So to find a plan only goal situation and block 
positions can be considered. Subgoals are serialised in 
decreasing order according to block positions. Then each 
subgoal can be solved using only 1 macro-operator. In 
Example 2 we have an order: 
 
{(on-table A), (on-table E), (on-table F), (on-table B), (on-
table C), (on-table G), (on-table D), (on-table H)} 
 
Such order leads to a solution of Example 2. 
 
Each step requires only polynomial-time, so presented 
planning problem is solved in polynomial-time (belongs 
to class P of complexity). 
 
CONCLUSION 

Defining Block World environment as an invertible 
STRIPS planning problem allows to apply planning in the 
presence of incompleteness as a machinery of searching 
for a solution of inverted multi-agent problem and then 
extraction of a solution for the primary multi-agent 
problem. It is possible to use non-cooperative equilibrium 
strategy to improve the founded plan. 
 
The result obtained for problems 1 and 2 using non-
cooperative equilibrium definition should be understood 
as only example how to apply game-theoretic approach to 
solve rather narrow class of planning problems. The wide 
class of problems were not shown here e.g. how to modify 
the plan when there are more than one Nash equilibrium 
point, how to extend this methodology for more agents. 
 
More solved problems can be found on 
www.zts.ia.polsl.gliwice.pl/galuszka/index1.htm.  
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