
STRIPS REPRESENTATION AND NON-COOPERATIVE STRATEGIES
IN MULTI-ROBOT PLANNING

Adam Gałuszka and Andrzej Świerniak

Institute of Automatic Control
Silesian University of Technology

Akademicka 16, 44-100 Gliwice, POLAND
E-mail: agaluszka@ia.polsl.gliwice.pl

KEYWORDS
Planning problems, multi-robot environment, STRIPS
system, complexity of planning, non-cooperative
strategies

ABSTRACT

In multi-agent (multi-robot) environment each agent tries
to reach its own goal and it implies that in most cases the
agent goals conflict. Under some assumptions such
problems can be modelled as a STRIPS system (for
instance Block World environment) with one initial state
and alternative of goal states. If STRIPS planning problem
is invertible then it is possible to apply machinery for
planning in the presence of incomplete information to
solve the inverted problem and then to find a solution for
the original problem. In the paper we propose the planning
algorithm that solves problem described above and, based
on known results, we analyse its computational
complexity.

INTRODUCTION

In multi-agent (multi-robot) environment each agent tries
to achieve its own goal (Boutilier and Brafman 2001,
Kraus et al. 1998). It leads to complications in problem
modelling and searching for solution: in most cases agent
goals are conflicting, agents have usually different
capabilities and goal preferences, agents interact with
problem environment simultaneously.

In this research problem environment was modelled as
Block World with STRIPS representation. This domain is
often used to model planning problems (Boutilier and
Brafman 2001, Kraus et al. 1998, Smith and Weld 1998,
Galuszka and Swierniak 2001) because of complex
actions definition and simple physical interpretation.
Starting from 1970s STRIPS formalism (Nilson 1980)
seems to be the most popular for planning problems
(Weld 1999). Planning problems algorithms usually are at
least NP- hard, even in Block World environment (here
the problem of optimal planning is NP-complete).

Block World today is stated an experimentation
benchmark for planning algorithms (Howe and Dahlman
2002). Also more realistic situations can be presented as
Block World problems, where moving blocks correspond
to moving different objects like packages, trucks and
planes (Slaney and Thiebaux 2001). The case of Block
World problem where the table has a limited capacity
corresponds to a container loading problem (Slavin 1996).

PROBLEM DEFINITION

We focus on the following situation:
- in the initial state there are a finite number of

blocks and a table with unlimited place;
- two (or, in general case, more) robots want to

rebuilt the initial state, each in its own way (each
robot wants to achieve its own desired goal
situation);

- goal of each robot consists of subgoals;
- each subgoal has its preference (subgoals are

more or less important for robots);
- robots have different capabilities (i.e. each robot

is not able to move all blocks);
- robots can not cooperate (this assumption is

justified in the case where in the environment the
communication is not allowed or communication
equipement is broken down).

We are interested in the following two problems:

- to find a solution for above situation;
- to analyse computational complexity of searching

for this solution.

METHOD OF FINDING A SOLUTION

The problem where there are some possible initial states
and one goal state is called problem of planning in the
presence of incompleteness. The inverted problem is the
situation with one initial state and more possible goal
states. It corresponds to multi-robot Block World problem
where each robot wants to achieve its own goal. If we are
able to find a plan for problem of planning in the presence

of incompleteness, then it is possible to extract solution
for multi-agent problem.

Below we define STRIPS System, invertible planning
problem and inverse operators.

Strips system

In general, STRIPS system is represented by four lists (C;
O; I; G) (Bylander 1994, Nilson 1980):
- a finite set of ground atomic formulas (C), called
conditions;
- a finite set of operators (O);
- a finite set of predicates that denotes initial state (I);
- a finite set of predicates that denotes goal state (G).

Initial state describes physical configuration of the blocks.
Description should be complete i.e. should deal with every
true predicate corresponding to the state. Goal state is a
conjunction of predicates. In multi-agent environment
each agent defines own goal. This description does not
need to be complete. The algorithm results in an ordered
set of operators which transforms an initial state into a
goal state.

Operators O in STRIPS representation consist of three
sublists: a precondition list (pre), a delete list (add) and an
add list (del). Formally an operator Oo ∈ takes the form
pre(o) → add(o), del(o). The precondition list is a set of
predicates that must be satisfied in world-state to perform
this operator. The delete list is a set of predicates that stay
false after performing the operator and the add list is a set
that stay true. Two last lists show effects of operator
performing in problem state. Following (Koehler and
Hoffmann 2000) the set of actions in a plan is denoted by
PO.

It is assumed that agents can have different capabilities
(i.e. can deal with limited problem elements) and no
negotiations are allowed. No negotiation assumption is
satisfied in all situations where communication between
agents is not allowed by problem environment or
communication system fails. The case with negotiation is
described for instance in (Kraus et al. 1998).

Goal preferences are also considered. We will understand
the profit as a sum of preferences of goals being satisfied.

Invertible Planning Problem
Definition of Invertible Planning Problem (Koehler and
Hoffmann 2000) The problem (C, O, I, G) is called
invertible if and only if

sPPssultsultPPs
OOOO =∃∀∀)),,((ReRe::: ,

where

Result(S, <>) = S,
Result(S, <o>) = (S ∪ add(o)) \ del(o) if pre(o) ⊆ S ,
 S in the opposite case,
Result(S, <o1, o2,....., on>) = Result(Result(S, <o1>),
<o2,...., on>),

and
O

P is called an inverted plan.

Inverse Operator
Definition of Inverse Operator (Koehler and Hoffmann
2000). An operator Oo ∈ is called inverse if and only if it
has the form)(),()(odeloaddopre → and satisfies the
conditions:

1.)(\)()()(odeloaddopreopre ∪⊆
2.)()(odeloadd =
3.)()(oaddodel = .

Under closed world assumption condition applying an
inverse operator leads back to previous state. It is proved
that if there is an inverse operator for each operator, then
the problem is invertible.

There are assumed four classical operators in Block World
(Nilson 1980). The only difference is that operators stack
and unstack precise only the block that is currently
transformed (i.e. do not precise on which block is stacked
a transformed blocks and from which block is unstacked a
transformed block):

- pickup(x) - block x is picked up from the table;

precondition list & delete list:
ontable(x), clear(x), handempty

add list: holding(x)
- putdown(x) - block x is put down on the table;

precondition list & delete list: holding(x)
add list: ontable(x), clear(x), handempty

- stack(x) - block x is stacked on any block y;
precondition list & delete list:
holding(x), clear(y)
add list: handempty, on(x,y), clear(x)

- unstack(x) - block x is unstacked from any block y;
precondition list & delete list:
 handempty, clear(x), on(x,y)
add list: holding(x), clear(y).

It is easy to see that unstack is an inverse operator for
stack and pickup is an inverse operator for putdown. We
have defined Block World as an invertible planning
problem because it allows to apply planning in the
presence of incompleteness methodology to search for
solution of inverted multi-agent problem and then to
extract solution for the right multi-agent problem.

Plan in the presence of incompleteness as an inverted
plan in multi-robot environment

Algorithm of planning in the presence of incompleteness
handle planning problems with uncertainty in the initial
state (e.g. Weld et al. 1998). In this case the algorithm
seeks to generate a robust plan by thinking over all
possibilities. This approach is called Conformant planning
(Smith and Weld 1998). Conformant planning algorithms
develop non-conditional plans that do not rely on sensory
information, but still succeed no matter which of the
allowed states the world is actually in.

Simulation results

Block world environment was implemented using PDDL
language (Planning Domain Definition Language)
extended for handling uncertainty in the initial state (Yale
Center… 1998). Sensory Graphplan algorithm was used to
solve block world problems with uncertainty in the initial
state
(www.cs.washington.edu/research/projects/www/sgp.html).
Two different problems are presented below. In both cases
2 robots are operating in the environment. In problem 1
Robot 1 is capable of moving blocks A,B and C whereas
robot 2 can move blocks D, E and F. In Problem 2 Robot
1 is capable of moving blocks A, B, C and D whereas
robot 2 can move blocks E, F, G and H. In both cases
definitions of the operators are inverted (operator names
are changed i.e. unstack for stack and pickup for
putdown). It implies that the plan for the inverted problem
is extract just by executing founded plan in the inverted
order. In both cases agents goals are in conflict. The case
when in multi-agent environment the goals do not conflict
was explored in (Galuszka and Swierniak 2002).

Problem 1. The initial state is presented on figure 1. The
goal state of robot 1 is on figure 2 and the goal state of
robot 2 is on figure 3.

Figure 1: Initial state

Figure 2: Desired goal state of robot 1 (the goal conflicts
with the goal of robot 2) (each goal has its preference)

Figure 3: Desired goal state of robot 2 (the goal conflicts
with the goal of robot 1) (each goal has its preference)

Solution to two-robot problem 1 (steps from 1 to 7):
2 contexts
step 7 - ((((STACK2 E)))
step 6 - (((PICK-UP2 E)) ((STACK1 A)))
step 5 - (((STACK2 D)) ((UNSTACK1 A)))
step 4 - (((PICK-UP2 D)) ((STACK1 C)))
step 3 - (((PUT-DOWN2 D)) ((UNSTACK1 C)))
step 2 - (((PICK-UP2 D)) ((PUT-DOWN1 B)))
step 1 - (((UNSTACK1 B))))

Problem 2. The initial state is presented on figure 4. The
goal state of robot 1 is on figure 5 and the goal state of
robot 2 is on figure 6.

Figure 4. Initial state for problem 2

Figure 5: Desired goal state of robot 1 (the goal conflicts
with the goal of robot 2) (each goal has its preference)

Figure 6: Desired goal state of robot 2 (the goal conflicts
with the goal of robot 1) (each goal has its preference)

A
E D

B
F
C

A
D
E

C
F B

1
3 2

4

A

C

E

D

F B
1

4 2

3

A E DB F C G H

A E

D

B F

C G

H

2

1

4 2
3

3

A E

H

F B

C G

D

1

3

2 3
3

4

Solution for this two-robot problem 2 (steps from 1 to 6):

2 contexts
step 6 - ((((STACK2 E)) ((STACK1 A)))
step 5 - (((PICK-UP2 E)) ((PICK-UP1 A)))
step 4 - (((STACK2 F)) ((STACK1 B)))
step 3 - (((PICK-UP2 F)) ((PICK-UP1 B)))
step 2 - (((STACK2 G)) ((STACK1 C)))
step 1 - (((PICK-UP2 G)) ((PICK-UP1 C))))

Both agents can apply the above-founded plan to satisfy
their goals. However, when they are trying to achieve
their goals simultaneously they are in conflict. Now we
define the non-cooperative equilibrium (Nash
equilibrium) [6] and indicate how the agents can
maximise their profits (the sum of preferences of satisfied
goals) by achieving non-cooperative (Nash) equilibrium.

Non-cooperative equilibrium strategy

For presented problem a plan exists only if operators stack
and unstack have only 1 parameter so they do not precise
from which and on which block is stacked or stacked out.
It implies that both agents to reach theirs goals can apply
the founded plan but not simultaneously. When the goals
preferences are also considered then it is possible to use
Nash equilibrium strategy to precise how to apply the plan
simultaneously and maximise the profit (the sum of
satisfied goals preferences). The analysis of the problem
leads to two remarks:

Remark 1. It is not always possible to find Nash strategy
for defined problems and in general case it is depended on
size of the problem.

Remark 2. More precisely the Nash strategy (if exists)
defines the equilibrium for the whole plan when the
number of stack operators in founded plan is even for each
agent (2 operators for each agent in problem 1). When this
condition is not satisfied (3 operators for each agent in
problem 2) then the Nash strategy defines equilibrium
only for a part of the problem.

The conflict between agents will be presented by a
bimatrix game. Matrix A characterises the costs of the
first agent (the profit with the negative sign), matrix B
characterises the wastage of the second agent. We assume
that agent 1 chooses rows and agent 2 chooses columns of
the matrices. The agents are trying to minimise cost
functions defined by matrices A = {aij} and B = {bij}.

Definition of Nash equilibrium. The strategy {i0, j0}
determines non-cooperative (Nash) equilibrium in
bimatrix game (A,B) if the following inequalities are
satisfied:

a a

b b
i j ij

i j i j

o o o

o o o

≤

≤

for all i = 1, 2... n, j = 1, 2 ... m.

Now we define the matrixes for problem 1. The strategies
in matrices are corresponding to the plan that solves the
problem 2. Agent 1 can stack block C either on B or F and
block A on C or D whereas agent 2 can stack block D on
B or F and block E on C or D. Values in matrices
correspond to goal preferences (e.g. robot 1 stacks block
A on C and robot 2 block D on F then profit of robot 1 is
5 – it satisfied 2 its subgoals - whereas profit of robot 2 is
0 – it satisfied none of its subgoals).

Table 1: Matrix A (profits of the first agent)

1 2 stack D B stack D F stack E C stack E D
 stack C B 3 3+2 3 3+4
 stack C F 0 2 0 4
 stack A C 1 1+2 1 1+4
 stack A D 0 2 0 4

Table 2: Matrix B (profits of the second agent)

1 2 stack D B stack D F stack E C stack E D
 stack C B 1 0 2 0
 stack C F 1+3 3 2+3 3
 stack A C 1 0 2 0
 stack A D 1+4 4 2+4 4

Table 3: Matrix A (costs of the first agent)

 1 2 stack D B stack D F stack E C stack E D
 stack C B - 3 - 5 (- 3) - 7
 stack C F 0 - 2 0 - 4
 stack A C - 1 - 3 - 1 - 5
 stack A D 0 - 2 0 - 4

Table 4: Matrix B (costs of the second agent)

 1 2 stack D B stack D F stack E C stack E D
 stack C B - 1 0 (- 2) 0
 stack C F - 4 - 3 - 5 - 3
 stack A C - 1 0 - 2 0
 stack A D - 5 - 4 - 6 - 4

In this game we found one strategy that satisfies non-
cooperative (Nash) equilibrium definition (in brackets).
This strategy modifies the plan in such a way that agent 1
should place block C on B and agent 2 should place block

E on C. It leads to the situation when the final state for the
problem 2 takes the form (figure 7).

Figure 7: Final state for problem 2 comes from Nash
equilibrium

Finally, the profit of the first agent is now 3 + 2 = 5 and
for the second agent 2 + 4 = 6.

COMPUTATIONAL COMPLEXITY OF
SEARCHING FOR THE SOLUTION

In general planning with complete information is NP-
complete. Planning in the presence of incompleteness
belongs to the next level in the hierarchy of completeness
(Baral at al. 2000). A condition for ‘incomplete’ block
world problems that reduced complexity of finding a plan
to the class P will be shown.

Non-optimal planning in Block World is easy (Gupta and
Nau 1992, Bylander 1994). To analyse complexity in our
case it is assumed that planning problems are limited to
only completely decomposed initial stae (i.e. all blocks are
on the table) as it is shown in the example 2. Then the
inverted problem is to decompose all possible initial states
(i.e. goal definition consists only of ‘on-table’ predicates).
The number of possible initials corresponds to number of
robots. So the inverted problem is planning in the
presence of incompleteness.

Now it wil be shown a class of ‘incomplete’ block world
problems for which finding a plan is also easy. In this
class each block has the same position in stack in each
possible initial state. This class belongs to the same class
of complexity as classical block world planning.

To represent possible initial states of block world it will
be used Hass Diagram (Gupta and Nau 1992). This
diagram is a directed acyclic graph whose nodes are the
blocks and arcs are from block x to y if and only if on(x,y)
is in initial state. This diagram can be constructed in linear
time (Gupta and Nau 1992). Since the number of possible
initial states is bounded by number of robots then time
necessary to built Hass diagram for all initial states is also
linear.

Next for each block in each possible initial state the
position in stack is calculated using Hass diagrams. It
corresponds to the problem of lenght of path in a acyclic
graph. In the problem 2 block positions are:

- for A and E – 3,
- for F and B – 2,
- for C and G – 1,
- for D and H – 0.

for two possible initial states.

If each block has the same position in stack in each
possible initial state then there exists the same plan for
each agent that solves the problem of decomposing all
initials. So to find a plan only goal situation and block
positions can be considered. Subgoals are serialised in
decreasing order according to block positions. Then each
subgoal can be solved using only 1 macro-operator. In
Example 2 we have an order:

{(on-table A), (on-table E), (on-table F), (on-table B), (on-
table C), (on-table G), (on-table D), (on-table H)}

Such order leads to a solution of Example 2.

Each step requires only polynomial-time, so presented
planning problem is solved in polynomial-time (belongs
to class P of complexity).

CONCLUSION

Defining Block World environment as an invertible
STRIPS planning problem allows to apply planning in the
presence of incompleteness as a machinery of searching
for a solution of inverted multi-agent problem and then
extraction of a solution for the primary multi-agent
problem. It is possible to use non-cooperative equilibrium
strategy to improve the founded plan.

The result obtained for problems 1 and 2 using non-
cooperative equilibrium definition should be understood
as only example how to apply game-theoretic approach to
solve rather narrow class of planning problems. The wide
class of problems were not shown here e.g. how to modify
the plan when there are more than one Nash equilibrium
point, how to extend this methodology for more agents.

More solved problems can be found on
www.zts.ia.polsl.gliwice.pl/galuszka/index1.htm.

Acknowledgement
This work was supported by State Committee for
Scientific Research grant No. 4 T11A 012 23 for the year
2003.

REFERENCES

Baral Ch., V. Kreinovich, R.Trejo. 2000. Computational

complexity of planning and approximate planning in

E

D

A

C

F B

the presence of incompleteness. Artificial Intelligence,
122: 241-267.

Boutilier C., Brafman R.I. 2001. Partial-Order Planning
with Concurrent Interacting Actions. Journal of
Artificial Intelligence Research, 14:105-136.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69:165-204.

Gałuszka A, A. Świerniak. 2002. Planning in multi-agent
environment as inverted STRIPS planning in the
presence of uncertainty. Recent Advances In
Computers, Computing and Communications (Ed. July
2002), WSEAS Press, pp.58-63.

Gupta N., D.S. Nau. 1992. On the complexity of Blocks-
World Planning. Artificial Intelligence, 56(2-3):223-
254.

Howe A.E., E.Dahlman. 2002. A Critical Assesment of
Benchmark Comparison in Planning. Journal of
Artificial Intelligence Research 17 (2002), pp. 1-33.

Koehler, J.; J. Hoffmann. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-
Driven Planning Algorithm. Journal of Artificial
Intelligence Research, 12 (2000), pp. 339–386.

Kraus, S.; K. Sycara; A. Evenchik. 1998. Reaching
agreements through argumentation: a logical model
and implementation. Artificial Intelligence, 104:1-69.

Mesterton-Gibbons, M. 2001. An Introduction to Game-
Theoretic Modelling. American Mathematical Society.

Nilson, N.J. 1980. Principles of Artificial Intelligence.
Toga Publishing Company, Palo Alto, 1980.

CA.Slaney J., S. Thiebaux. 2001. Block World revisited.
Artificial Intelligence 125 (2001) 119-153.

Slavin T. 1996. Virtual port of call. New Scientist, June
1996, pp. 40-43.

Smith, D.E.; D.S. Weld. 1998. Conformant Graphplan.
Proc. 15th National Conf. on AI.

Weld, D.S. 1999. Recent Advantages in AI Planning.
Technical Report UW-CSE-98-10-01, AI Magazine,
1999.

Weld, D.S., C.R. Anderson i D.E. Smith. 1998.
„Extending Graphplan to Handle Uncertainty &
Sensing Actions”. Proc. 15th National Conf. on AI,
897-904.

Yale Center for Computational Vision and Control. 1998,
PDDL – The Planning Domain Definition Language,
Tech Report CVC TR-98-003/DCS TR-1165.

AUTHOR BIOGRAPHIES

ANDRZEJ ŚWIERNIAK received M.Sc., Ph.D. and
D.Sc. (habilitation) degrees in control engineering
respectively in 1972, 1978 and 1988 all from the
Department of Automatic Control, Silesian University of
Technology in Gliwice, and M.A. in mathematics in 1975
from University of Silesia in Katowice, Poland. He is
currently a professor at the Silesian University of
Technology. His research interests are in modern control
and optimisation theory, biomedical modelling and
control, artificial intelligence and CADM.

ADAM GAŁUSZKA was born Ruda Slaska, Poland in
June 6, 1972. He received M.Sc. degree in automation and
robotics Silesian University of Technology, Poland, in
1996. Since 1996 he has been a doctorate student at the
Silesian University of Technology and Teaching Assistant
in Dept. of Automatic Control. In 2001 he received Ph.D.
degree in automation and robotics from Silesian University
of Technology, Poland. He is interested in artificial
intelligence planning algorithms with STRIPS
representation.

	INTRODUCTION
	Simulation results

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

