
MODELLING WITH THE INTEGRATED PERFORMANCE MODELLING
ENVIRONMENT (IPME)

Anna M. Fowles-Winkler

Micro Analysis and Design, Inc.
4949 Pearl East Circle, Suite 300

Boulder, CO, USA 80301
E-mail: awinkler@maad.com

KEYWORDS This paper will provide a basic understanding of
IPME’s plug-and-play models, human performance
workload features, and interoperability capabilities.

Discrete-event simulation, High-Level Architecture,
human performance, simulation tool, workload.

ABSTRACT PLUG-AND-PLAY MODELS

An IPME model, or system, is a collection of models
and data that represent what the user is currently
analysing. A system is comprised of the following
component models:

The Integrated Performance Modelling Environment
(IPME) is a commercially-available, Linux-based
discrete-event simulation software application for
building models that simulate real-life processes. With
IPME models, users can gain useful information about
processes that might be too expensive or time-
consuming to test in the real world. Some example
application areas for simulation modelling using IPME
include the following:

• An environment model
• A crew model
• A performance shaping model
• A task network model
• An experimental suite

• Evaluating procedures, workload, and staffing
issues for aircraft and ships, including
workstations.

• An external model
The only required component model is the task network
model; all other models are completely optional. This
section will describe all models except for the external
model. The external model is discussed later in the
section titled “Interoperability.”

• Modelling adaptation and alertness to changing
time zones.

• Analysing information flow, staff sizes, and
workload for a staff of 15-20 people in a
military control centre.

An environment model describes external factors such
as physical, crew, mission, and threat factors. Physical
factors include humidity and temperature. Crew factors
can define how well the group performs as a team,
including factors such as leadership. Mission factors
include elements like intelligence and weapons
reliability. Finally, threat factors describe the degree of
threat from an enemy, and the position of the target.
Each factor may have an associated expression that is
evaluated at each simulation event.

IPME provides a plug-and-play model environment to
allow for flexibility in evaluating different environments
and crews. The built-in workload functionality accounts
for operator resource demands in systems. Finally,
IPME’s communications interoperability provides an
easy way to reuse existing models or simulations.

INTRODUCTION

Micro Analysis and Design, Inc. began IPME
development in 1995 with support from QinetiQ Centre
for Human Sciences. In 1998, Defence Research and
Development Canada—Toronto (DRDC-Toronto)
joined the development program. Built from the
software base of Micro Saint, a Microsoft Windows-
based commercial discrete-event simulation product,
IPME is an integrated environment of plug-and-play
component models designed to analyze human system
performance. From the beginning, development has
focused on two goals: 1) providing a flexible modelling
environment, allowing users to choose which
components they needed for their analyses, and 2)
allowing IPME to communicate with other simulation
applications.

By default an environment model includes a basic set of
variables. Customizing an environment model by
adding user-defined external factors allows the model to
fit particular environments under consideration.
Environment models of different areas can be developed
and plugged into existing systems, providing a simple
way to compare operator performance under different
environmental factors. For example, a model of a
military’s ground forces could have one environment
model to represent a jungle, and a second environment
model to represent a desert.

A crew model defines individual operator roles, and
includes operator characteristics such as non-physical
traits (fitness, training), states that change during
simulation (boredom, hunger), and physical properties
including anthropometry (weight, height). Because

states can be updated during a simulation run, each
operator defined in a crew model can have unique
characteristics. Traits are generally held constant during
a simulation run, but can be varied for a block of runs
using the experimental suite, described later in this
section. Currently, operator anthropometry cannot be
varied as traits can, but a future version of IPME will
include this functionality.

A performance shaping model is a collection of user-
defined functions called performance shaping functions
(PSFs) that modify the time it takes to complete a task,
or the probability of task failure. The PSFs are linked to
individual tasks through a task taxonomy, allowing one
PSF function to be dynamically applied to any similar
task in a model. Since PSFs can use operator states as
expression variables, models can discriminate
performance results as a function of operator
characteristics. Therefore, simulations can have two
operators performing the same task type with different,
and therefore more realistic, task time and probability of
failure outcomes.

The task network model is a graphical display of the
system processes or tasks. Because IPME’s task
network model is based on the same technology as
Micro Saint’s task network model, the terminology used
to describe the task network model components are
clearly based in human performance modelling. A task
network model consists of networks and tasks. Figure 1
shows a sample task network model.

Figure 1: IPME Task Network Model Dialogue

Networks may be a sequence of tasks performed by an
operator or a series of processes that define an
organization. Tasks generally denote human activities,
but they might represent other, non-operator processes,
or logic to support the simulation. Tasks contain timing
information, conditions for execution, and operator
assignments. Operators from the crew model may be
statically assigned to particular tasks, or they may be
dynamically assigned depending on aspects such as
what operators are available to perform the task.

A task has a set of expressions associated with it to
control when the task executes, to control the state of

the system when the task begins or ends, and to specify
what, if anything, should happen if a task fails to
execute. These expressions may contain user-defined
variables and functions. Variables and functions are
defined globally, and may be used in any expression in
any model.

While it is optional to use the environment, crew, and
PSF models, using all three in combination with the task
network model takes advantage of the plug-and-play
nature of IPME, and the interconnectedness of the
models. External factors from the environment model
and operator states from the crew model may affect
operator performance, with that performance being
defined as a PSF. If an analysis requires different
environments or crews to be analysed, those different
models can be easily used with a single task network
model. Figure 2 shows the relationship between these
component models.

Environmental
Factors

Operator
States

Performance
Shaping
Function

Task Network
Tasks

Environmental
Factors

Operator
States

Performance
Shaping
Function

Task Network
Tasks

Figure 2: Component Model Relationships

After a model has been developed in IPME, the
experimental suite can be used to vary system variables
to show equipment, design, operator, or procedure
variability. The user specifies independent and
dependent variables and their values for each simulation
run or for a block (a series) of runs. For example, the
environmental physical factor temperature can be
configured to have the value –10°C for the first block of
runs, 0°C for the second block of runs, and +10°C for
the final block of runs. Human trait values such as
fitness can also vary across simulation runs and
potentially represent differing human populations to be
used in the model. The experimental suite provides a
user-friendly method of running multiple experiment
blocks with varying variable values.

Once a model has been developed, an analyst may
decide to share portions of that model with other
analysts. The built-in master library allows users to
store and distribute operators, performance shaping
functions, environment models, and networks. These
models are under revision control in the master library,
indicating new models and when models have changed.
Users link to models in the master database in a read-
only mode, preventing modification without permission.
To modify a master library model, a user must either
have permission to modify the library, or the user may
unlink the model from the library. By unlinking a
model, a user is then able to modify a local copy of the
model without modifying the library version of the data.

WORKLOAD

IPME includes the following built-in workload
methodologies: Prediction of Operator Performance
(POP), Visual, Auditory, Cognitive, and Psychomotor
(VACP) and Workload Index (W/Index), and
Information Processing/Perceptual Control Theory
(IP/PCT).

Figure 4: VACP and W/Index Values
 POP, developed by the Defence Evaluation Research

Agency (DERA) 1992-1995, predicts performance
degradation from interference between concurrent tasks
(MAAD 2003). Input (visual or auditory), central
(mental operations), and output demands (manual or
vocal) are considered for each task. Figure 3 shows the
POP Workload Percentages portion of the task
assignment and workload dialogue for a sample task.

VACP values are selected for each of the channel
categories, and then the corresponding weights are
automatically generated. Each task is rated based on the
weighted task demand within the channels. During
simulation execution, attentional demand is calculated
for each operator

The W/Index algorithm (Sarno 1992) measures the
resource demand imposed upon an operator within six
resource channels, and supports interference between
channels. The VACP resource values can be
automatically mapped to W/Index values, as seen in
Figure 4 by the “Map to W/Index” button. Operator
workload is then calculated during simulation
execution. Figure 5 shows the instantaneous workload
and demand per operator in a system. In this particular
example, there is a single operator (Operator 1) in the
system, with three tasks being executed concurrently by
the operator. This dialogue also graphically shows the
attentional demand ratings and workload values as they
change.

Figure 3: POP Workload Percentages

The task assignment and workload dialogue includes a
Workload Percentages section for POP workload data.
The workload demand values are entered for the input,
central, and/or output channels, with 100 representing
maximum workload before overload. A task demand
multiplier (TDM) is calculated based on the fraction of
time a single resource for a single task is available to the
time that it is actually used. The TDM then lengthens
task time when it is multiplied with the task mean time.
The implementation in IPME is symmetric; therefore,
resources are divided symmetrically among tasks during
simulation execution.

Tasks can be externally or internally paced in the POP
algorithm. An externally paced task is scheduled by
external source, for example, a supervisor requesting a
report. An internally paced task is self-scheduled by the
operator. Externally paced tasks are higher priority than
internally paced tasks; therefore if an operator is
overloaded, internally paced tasks will be rescheduled to
accommodate the operator completing externally paced
tasks in the time available.

Figure 5: Instantaneous Workload and Demand

IP/PCT was developed by Keith Hendy of DRDC-
Toronto. This workload methodology posits that all
factors that impact human cognitive workload can be
reduced to their effects on the amount of information to
be processed (an operator’s cognitive limits), and the
amount of time available before the task must be
completed (an operator’s time pressure). According to
IP/PCT, human operators change their processing
strategy to reduce the amount of information to be
processed, or increase the time available.

VACP and W/Index measure the resource demand
imposed upon an operator. The VACP algorithm
measures the task loading for an operator within visual,
auditory, cognitive, and psychomotor channels
(McCracken 1984, Bierbaum 1987). The VACP portion
of the task assignment and workload dialogue is shown
in the upper portion of Figure 4. In IPME, the IP/PCT scheduler places tasks on the event

queue based on how a human would order tasks. For
example, the most important tasks are addressed first,

INTEROPERABILITY and tasks that are almost finished are completed before
starting new tasks. Each task assigned to an operator is
categorized according to time priority. The external model allows IPME to communicate with

other existing models or applications. There are two
supported communications protocols: a TCP/IP sockets
interface and High Level Architecture (HLA).

Additionally, cognitive and structural interference are
considered. A memory limit is set for all operators,
which affects the number of tasks an operator has in
prospective memory, the memory before working
memory. Tasks may be shed from prospective memory,
meaning that the operator has forgotten about those
tasks.

The external TCP/IP sockets interface is a simple
protocol that allows IPME to communicate with other
simulations (IPME to IPME or IPME to custom
simulations). This functionality extends the capabilities
of the overall IPME system by allowing an IPME model
to share data with custom simulations such as model
optimisers, cognitive models, and applications that
animate IPME models. IPME may be run as either the
server or the client. When IPME is run as a client, the
custom application controls IPME model execution by
dictating when events can happen. More typically,
IPME is run as a server to control event execution in the
custom application.

Structural interference between tasks appears when an
operator is required to operate separate controls with a
single limb, when visual focus is required for images
too far apart, or when an operator is required to speak
two (or more) distinct messages at the same time. The
IP/PCT scheduler determines which task to execute
based on time priority and available channels. Tasks
that cannot execute due to interference may be delayed
until they can execute, or they may be shed.

There are three phases of communication: 1)
Registration, 2) Event Processing, and 3) Termination.
Because IPME is the interface controller, messages are
received from a custom application during Registration
and at scheduled event times during Event Processing.
During the Registration phase, the custom application
identifies itself to IPME and configuration information
is exchanged. The custom application also identifies
which IPME simulation variables it wants to be
informed of each time events are executed. Optionally,
during the Registration phase, the custom application
may request that IPME’s simulation time synchronise to
the host clock. This functionality allows for real-time
simulation execution.

Visual, auditory, cognitive, or psychomotor interference
in IP/PCT is determined by values set by the user for
each task. The IP components tab, shown in Figure 6,
allows the user to select the domain(s) used for the
particular task, and the domain category. For example,
a cognition task could be a passive monitoring task, or a
skill-based task.

Event Processing occurs after Registration. This phase
involves IPME notifying the custom application when it
may execute its next event (when IPME is running as a
server), plus the exchange of variables. After Event
Processing, the Termination phase terminates
communication between IPME and the custom
application.

HLA is the other communication method supported by
IPME. The HLA implementation in IPME uses the
Defense Modeling and Simulation Office (DMSO) Run-
Time Infrastructure (RTI) version 1.3NG version 3.2.
IPME does not yet define a Federation Object Model
(FOM), as is typically required by federations. It is
anticipated that with further interest and participation in
using IPME as a federate in a federation, at that time a
FOM will be developed.

Figure 6: IP/PCT Component Domain Selection

Both IP/PCT and POP affect task execution, and may
cause tasks to require more processing time, or to be
delayed, rescheduled, or shed, depending on an
operator’s workload and other concurrent processes.
These modifications to the simulation event queue occur
automatically as a result of operator overload or
interference, depending on the workload algorithm
enabled.

IPME has a defined Simulation Object Model (SOM),
required by federates. The SOM details how IPME
interacts with other federates. The object class
IPMEVariable is defined in the SOM to represent model
execution variables. An IPMEVariable may be one of
the following data types: integer, float, or string. When
IPME is configured as a federate, the user selects which

system variables to exchange with other federates, as
shown in Figure 7. Variables may be read or updated
by IPME.

Figure 8: IPME HLA Interaction Setup Dialogue

IPME implements two time management strategies by
being both a time-regulating and time-constrained
federate. A time-regulating federate associates events to
the federation time, determining when other federates
may execute their next events (DOD 2000). IPME is
also time-constrained, meaning that it expects to receive
events with a timestamp (DOD 2000). The time
lookahead value used by IPME can be specified by the
user, and does not change during a simulation run.

Figure 7: IPME Federation Variables Setup Dialogue

IPME sends variable values when the values are
updated. When another federate sends a variable update
to IPME, those values are then updated at their
timestamp time during simulation execution.

IPME supports user-defined, model dependent
interactions that subclass from the interaction
IPMEInteraction, defined in the SOM. User-defined
functions created in IPME may be used as interactions,
with the function parameters acting as interaction
parameters. Interactions provide a time-based method
for inserting expressions into the IPME simulation event
queue. Each interaction has a timestamp, therefore,
when an interaction is received by IPME, the
corresponding IPME function expressions are evaluated
at that timestamp time.

SUMMARY

This paper has focused on the three important aspects of
IPME: plug-and-play models, built-in workload
methodologies, and interoperability. The plug-and-play
model framework unique to IPME allows the user to
easily try different environments and crews with a
single task network and collection of performance
shaping factors. Built-in workload methodologies
simplify task network model development by reducing
workload calculations that might be otherwise required.
IPME also supports two communications protocols,
TCP/IP sockets and HLA, allowing an IPME system to
take advantage of pre-existing models and simulations.
IPME provides a powerful and flexible environment for
model development in order to analyze human
performance and stressors. Future development for
IPME includes varying operator anthropometry and
bundling useful, supportive client applications with
IPME.

Figure 8 shows the HLA Interaction Setup dialogue in
IPME. All available user-defined functions in a task
network model are listed in this dialogue. The user may
then select which functions to send as interactions, and
which to receive as interactions from other federates.
Function parameters do not need to exactly match
interaction parameters—extra parameters are either
ignored (if the extra parameter is in a task network
function) or set to a value of 0 (if the extra parameter is
sent from another federate).
 REFERENCES
Although a sample Federation Execution Details (FED)
file is provided, this file should be modified to specify
user-defined objects and interactions. Both the
IPMEVariable and IPMEInteraction classes are
instantiated in the FED file to support data and
interaction exchange between a particular federate and
other federates.

Bierbaum, C.R.; Szabo S.M., and Aldrich T.B. 1987. “A
comprehensive task analysis of the UH-60 mission with crew
workload estimates and preliminary decision rules for
developing a UH-60 workload prediction model.” Technical
Report ASI690-302-87[B], Anacapa Sciences Inc., Fort
Rucker, Alabama.

DOD (Department of Defense), Defense Modeling and
Simulation Office. 2000. “High Level Architecture Run-

Time Infrastructure: RTI 1.3 – Next Generation
Programmer’s Guide Version 3.2.”

Hendy, K.C.; and P. S. E. Farrell. 1997. “Implementing a
Model of Human Information Processing in a Task Network
Simulation Environment.” Defence and Civil Institute of
Environmental Medicine, DCIEM No 97-R-71 (December).

McCracken, J.H.; and T.B. Aldrich. 1984. “Analysis of
selected LHX mission functions: Implications for operator
workload and system automation goals.” Technical Note
ASI479-024-84. Fort Rucker, AL: Army Research Institute
Aviation Research and Development Activity.

Micro Analysis and Design (MAAD). 2003. Integrated
Performance Modelling Environment: User Guide, ver.
2.5.4, (May).

Micro Analysis and Design (MAAD). 2003. IPME Task
Network: User Guide, ver. 2.5.4, (May).

Sarno, K.; and C.D. Wickens. 1992. “The Role of Multiple
Resources in Predicting Time-Sharing Efficiency: An
Evaluation of Three Workload Models in a Multiple Task
Setting.” Technical Report ARL-91-3/NASA A31-91-1,
NASA AMES Research Center, Moffett Field, CA.

AUTHOR BIOGRAPHY

ANNA FOWLES-WINKLER is a Principal Software
Developer at Micro Analysis and Design where she
manages the IPME project. She has a Bachelor of
Science in Computer Science from the University of
Maryland. Ms. Fowles-Winkler is currently pursuing a
Master of Arts in Linguistics from the University of
Colorado. She started working on the IPME project in
1999 as a software developer, and moved to managing
the project in 2001. Ms. Fowles-Winkler is interested in
furthering IPME’s interoperability, including exploring
cognitive modelling frameworks. Her e-mail address is
: awinkler@maad.com. For more information about
IPME, see http://www.maad.com/ipme.

	PLUG-AND-PLAY MODELS
	INTEROPERABILITY
	SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHY

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

