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ABSTRACT PLUG-AND-PLAY MODELS 

An IPME model, or system, is a collection of models 
and data that represent what the user is currently 
analysing.  A system is comprised of the following 
component models: 

The Integrated Performance Modelling Environment 
(IPME) is a commercially-available, Linux-based 
discrete-event simulation software application for 
building models that simulate real-life processes. With 
IPME models, users can gain useful information about 
processes that might be too expensive or time-
consuming to test in the real world.  Some example 
application areas for simulation modelling using IPME 
include the following: 

• An environment model 
• A crew model 
• A performance shaping model 
• A task network model 
• An experimental suite 

• Evaluating procedures, workload, and staffing 
issues for aircraft and ships, including 
workstations. 

• An external model 
The only required component model is the task network 
model; all other models are completely optional.  This 
section will describe all models except for the external 
model.  The external model is discussed later in the 
section titled “Interoperability.” 

• Modelling adaptation and alertness to changing 
time zones. 

• Analysing information flow, staff sizes, and 
workload for a staff of 15-20 people in a 
military control centre. 

 
An environment model describes external factors such 
as physical, crew, mission, and threat factors.  Physical 
factors include humidity and temperature.  Crew factors 
can define how well the group performs as a team, 
including factors such as leadership.   Mission factors 
include elements like intelligence and weapons 
reliability.  Finally, threat factors describe the degree of 
threat from an enemy, and the position of the target. 
Each factor may have an associated expression that is 
evaluated at each simulation event.   

IPME provides a plug-and-play model environment to 
allow for flexibility in evaluating different environments 
and crews.  The built-in workload functionality accounts 
for operator resource demands in systems.  Finally, 
IPME’s communications interoperability provides an 
easy way to reuse existing models or simulations. 
 
INTRODUCTION 

Micro Analysis and Design, Inc. began IPME 
development in 1995 with support from QinetiQ Centre 
for Human Sciences.  In 1998, Defence Research and 
Development Canada—Toronto (DRDC-Toronto) 
joined the development program.  Built from the 
software base of Micro Saint, a Microsoft Windows-
based commercial discrete-event simulation product, 
IPME is an integrated environment of plug-and-play 
component models designed to analyze human system 
performance.  From the beginning, development has 
focused on two goals: 1) providing a flexible modelling 
environment, allowing users to choose which 
components they needed for their analyses, and 2) 
allowing IPME to communicate with other simulation 
applications. 

 
By default an environment model includes a basic set of 
variables.  Customizing an environment model by 
adding user-defined external factors allows the model to 
fit particular environments under consideration.  
Environment models of different areas can be developed 
and plugged into existing systems, providing a simple 
way to compare operator performance under different 
environmental factors.  For example, a model of a 
military’s ground forces could have one environment 
model to represent a jungle, and a second environment 
model to represent a desert. 
 
A crew model defines individual operator roles, and 
includes operator characteristics such as non-physical 
traits (fitness, training), states that change during 
simulation (boredom, hunger), and physical properties 
including anthropometry (weight, height).  Because 

 

 



states can be updated during a simulation run, each 
operator defined in a crew model can have unique 
characteristics.  Traits are generally held constant during 
a simulation run, but can be varied for a block of runs 
using the experimental suite, described later in this 
section.  Currently, operator anthropometry cannot be 
varied as traits can, but a future version of IPME will 
include this functionality. 
 
A performance shaping model is a collection of user-
defined functions called performance shaping functions 
(PSFs) that modify the time it takes to complete a task, 
or the probability of task failure.  The PSFs are linked to 
individual tasks through a task taxonomy, allowing one 
PSF function to be dynamically applied to any similar 
task in a model.  Since PSFs can use operator states as 
expression variables, models can discriminate 
performance results as a function of operator 
characteristics.  Therefore, simulations can have two 
operators performing the same task type with different, 
and therefore more realistic, task time and probability of 
failure outcomes. 
 
The task network model is a graphical display of the 
system processes or tasks.  Because IPME’s task 
network model is based on the same technology as 
Micro Saint’s task network model, the terminology used 
to describe the task network model components are 
clearly based in human performance modelling.  A task 
network model consists of networks and tasks.  Figure 1 
shows a sample task network model. 
 

 
 

Figure 1: IPME Task Network Model Dialogue 
 
Networks may be a sequence of tasks performed by an 
operator or a series of processes that define an 
organization.  Tasks generally denote human activities, 
but they might represent other, non-operator processes, 
or logic to support the simulation.  Tasks contain timing 
information, conditions for execution, and operator 
assignments.  Operators from the crew model may be 
statically assigned to particular tasks, or they may be 
dynamically assigned depending on aspects such as 
what operators are available to perform the task.  
 
A task has a set of expressions associated with it to 
control when the task executes, to control the state of 

the system when the task begins or ends, and to specify 
what, if anything, should happen if a task fails to 
execute.  These expressions may contain user-defined 
variables and functions.  Variables and functions are 
defined globally, and may be used in any expression in 
any model. 
 
While it is optional to use the environment, crew, and 
PSF models, using all three in combination with the task 
network model takes advantage of the plug-and-play 
nature of IPME, and the interconnectedness of the 
models.  External factors from the environment model 
and operator states from the crew model may affect 
operator performance, with that performance being 
defined as a PSF.  If an analysis requires different 
environments or crews to be analysed, those different 
models can be easily used with a single task network 
model.  Figure 2 shows the relationship between these 
component models. 
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Figure 2: Component Model Relationships 
 
After a model has been developed in IPME, the 
experimental suite can be used to vary system variables 
to show equipment, design, operator, or procedure 
variability.  The user specifies independent and 
dependent variables and their values for each simulation 
run or for a block (a series) of runs.  For example, the 
environmental physical factor temperature can be 
configured to have the value –10°C for the first block of 
runs, 0°C for the second block of runs, and +10°C for 
the final block of runs.  Human trait values such as 
fitness can also vary across simulation runs and 
potentially represent differing human populations to be 
used in the model.  The experimental suite provides a 
user-friendly method of running multiple experiment 
blocks with varying variable values. 
 
Once a model has been developed, an analyst may 
decide to share portions of that model with other 
analysts.  The built-in master library allows users to 
store and distribute operators, performance shaping 
functions, environment models, and networks.  These 
models are under revision control in the master library, 
indicating new models and when models have changed.  
Users link to models in the master database in a read-
only mode, preventing modification without permission.  
To modify a master library model, a user must either 
have permission to modify the library, or the user may 
unlink the model from the library.  By unlinking a 
model, a user is then able to modify a local copy of the 
model without modifying the library version of the data. 

 



 

 

WORKLOAD 

IPME includes the following built-in workload 
methodologies: Prediction of Operator Performance 
(POP), Visual, Auditory, Cognitive, and Psychomotor 
(VACP) and Workload Index (W/Index), and 
Information Processing/Perceptual Control Theory 
(IP/PCT).    

Figure 4: VACP and W/Index Values  
 POP, developed by the Defence Evaluation Research 

Agency (DERA) 1992-1995, predicts performance 
degradation from interference between concurrent tasks 
(MAAD 2003). Input (visual or auditory), central 
(mental operations), and output demands (manual or 
vocal) are considered for each task.  Figure 3 shows the 
POP Workload Percentages portion of the task 
assignment and workload dialogue for a sample task. 

VACP values are selected for each of the channel 
categories, and then the corresponding weights are 
automatically generated.  Each task is rated based on the 
weighted task demand within the channels.  During 
simulation execution, attentional demand is calculated 
for each operator 
 
The W/Index algorithm (Sarno 1992) measures the 
resource demand imposed upon an operator within six 
resource channels, and supports interference between 
channels. The VACP resource values can be 
automatically mapped to W/Index values, as seen in 
Figure 4 by the “Map to W/Index” button.  Operator 
workload is then calculated during simulation 
execution.  Figure 5 shows the instantaneous workload 
and demand per operator in a system.  In this particular 
example, there is a single operator (Operator 1) in the 
system, with three tasks being executed concurrently by 
the operator.  This dialogue also graphically shows the 
attentional demand ratings and workload values as they 
change. 

 

 
 

Figure 3: POP Workload Percentages 
 
The task assignment and workload dialogue includes a 
Workload Percentages section for POP workload data.  
The workload demand values are entered for the input, 
central, and/or output channels, with 100 representing 
maximum workload before overload.  A task demand 
multiplier (TDM) is calculated based on the fraction of 
time a single resource for a single task is available to the 
time that it is actually used.  The TDM then lengthens 
task time when it is multiplied with the task mean time.  
The implementation in IPME is symmetric; therefore, 
resources are divided symmetrically among tasks during 
simulation execution. 

 

 

 
Tasks can be externally or internally paced in the POP 
algorithm.  An externally paced task is scheduled by 
external source, for example, a supervisor requesting a 
report.  An internally paced task is self-scheduled by the 
operator.  Externally paced tasks are higher priority than 
internally paced tasks; therefore if an operator is 
overloaded, internally paced tasks will be rescheduled to 
accommodate the operator completing externally paced 
tasks in the time available. 

 
Figure 5: Instantaneous Workload and Demand 

 
IP/PCT was developed by Keith Hendy of DRDC-
Toronto.  This workload methodology posits that all 
factors that impact human cognitive workload can be 
reduced to their effects on the amount of information to 
be processed (an operator’s cognitive limits), and the 
amount of time available before the task must be 
completed (an operator’s time pressure).  According to 
IP/PCT, human operators change their processing 
strategy to reduce the amount of information to be 
processed, or increase the time available.   

 
VACP and W/Index measure the resource demand 
imposed upon an operator.  The VACP algorithm 
measures the task loading for an operator within visual, 
auditory, cognitive, and psychomotor channels 
(McCracken 1984, Bierbaum 1987).  The VACP portion 
of the task assignment and workload dialogue is shown 
in the upper portion of Figure 4.   In IPME, the IP/PCT scheduler places tasks on the event 

queue based on how a human would order tasks.  For 
example, the most important tasks are addressed first, 

 



INTEROPERABILITY and tasks that are almost finished are completed before 
starting new tasks.  Each task assigned to an operator is 
categorized according to time priority.   The external model allows IPME to communicate with 

other existing models or applications.  There are two 
supported communications protocols: a TCP/IP sockets 
interface and High Level Architecture (HLA). 

 
Additionally, cognitive and structural interference are 
considered.  A memory limit is set for all operators, 
which affects the number of tasks an operator has in 
prospective memory, the memory before working 
memory.  Tasks may be shed from prospective memory, 
meaning that the operator has forgotten about those 
tasks.   

 
The external TCP/IP sockets interface is a simple 
protocol that allows IPME to communicate with other 
simulations (IPME to IPME or IPME to custom 
simulations).  This functionality extends the capabilities 
of the overall IPME system by allowing an IPME model 
to share data with custom simulations such as model 
optimisers, cognitive models, and applications that 
animate IPME models.  IPME may be run as either the 
server or the client.  When IPME is run as a client, the 
custom application controls IPME model execution by 
dictating when events can happen.  More typically, 
IPME is run as a server to control event execution in the 
custom application. 

 
Structural interference between tasks appears when an 
operator is required to operate separate controls with a 
single limb, when visual focus is required for images 
too far apart, or when an operator is required to speak 
two (or more) distinct messages at the same time.  The 
IP/PCT scheduler determines which task to execute 
based on time priority and available channels.  Tasks 
that cannot execute due to interference may be delayed 
until they can execute, or they may be shed.  

There are three phases of communication: 1) 
Registration, 2) Event Processing, and 3) Termination.  
Because IPME is the interface controller, messages are 
received from a custom application during Registration 
and at scheduled event times during Event Processing.  
During the Registration phase, the custom application 
identifies itself to IPME and configuration information 
is exchanged.  The custom application also identifies 
which IPME simulation variables it wants to be 
informed of each time events are executed.  Optionally, 
during the Registration phase, the custom application 
may request that IPME’s simulation time synchronise to 
the host clock.  This functionality allows for real-time 
simulation execution. 

 
Visual, auditory, cognitive, or psychomotor interference 
in IP/PCT is determined by values set by the user for 
each task.  The IP components tab, shown in Figure 6, 
allows the user to select the domain(s) used for the 
particular task, and the domain category.  For example, 
a cognition task could be a passive monitoring task, or a 
skill-based task. 
 

 

 
Event Processing occurs after Registration.  This phase 
involves IPME notifying the custom application when it 
may execute its next event (when IPME is running as a 
server), plus the exchange of variables.  After Event 
Processing, the Termination phase terminates 
communication between IPME and the custom 
application. 
 
HLA is the other communication method supported by 
IPME.  The HLA implementation in IPME uses the 
Defense Modeling and Simulation Office (DMSO) Run-
Time Infrastructure (RTI) version 1.3NG version 3.2.  
IPME does not yet define a Federation Object Model 
(FOM), as is typically required by federations.  It is 
anticipated that with further interest and participation in 
using IPME as a federate in a federation, at that time a 
FOM will be developed.   

 
Figure 6: IP/PCT Component Domain Selection 

 
Both IP/PCT and POP affect task execution, and may 
cause tasks to require more processing time, or to be 
delayed, rescheduled, or shed, depending on an 
operator’s workload and other concurrent processes.  
These modifications to the simulation event queue occur 
automatically as a result of operator overload or 
interference, depending on the workload algorithm 
enabled. 

 
IPME has a defined Simulation Object Model (SOM), 
required by federates.  The SOM details how IPME 
interacts with other federates.  The object class 
IPMEVariable is defined in the SOM to represent model 
execution variables.  An IPMEVariable may be one of 
the following data types: integer, float, or string.  When 
IPME is configured as a federate, the user selects which  

 



system variables to exchange with other federates, as 
shown in Figure 7.  Variables may be read or updated 
by IPME. 

 

 

 

 
Figure 8: IPME HLA Interaction Setup Dialogue 

 
IPME implements two time management strategies by 
being both a time-regulating and time-constrained 
federate.  A time-regulating federate associates events to 
the federation time, determining when other federates 
may execute their next events (DOD 2000).  IPME is 
also time-constrained, meaning that it expects to receive 
events with a timestamp (DOD 2000).  The time 
lookahead value used by IPME can be specified by the 
user, and does not change during a simulation run. 

 
Figure 7: IPME Federation Variables Setup Dialogue 

 
IPME sends variable values when the values are 
updated.  When another federate sends a variable update 
to IPME, those values are then updated at their 
timestamp time during simulation execution. 
 
IPME supports user-defined, model dependent 
interactions that subclass from the interaction 
IPMEInteraction, defined in the SOM.  User-defined 
functions created in IPME may be used as interactions, 
with the function parameters acting as interaction 
parameters.  Interactions provide a time-based method 
for inserting expressions into the IPME simulation event 
queue.  Each interaction has a timestamp, therefore, 
when an interaction is received by IPME, the 
corresponding IPME function expressions are evaluated 
at that timestamp time.   

 
SUMMARY 

This paper has focused on the three important aspects of 
IPME: plug-and-play models, built-in workload 
methodologies, and interoperability.  The plug-and-play 
model framework unique to IPME allows the user to 
easily try different environments and crews with a 
single task network and collection of performance 
shaping factors.  Built-in workload methodologies 
simplify task network model development by reducing 
workload calculations that might be otherwise required.  
IPME also supports two communications protocols, 
TCP/IP sockets and HLA, allowing an IPME system to 
take advantage of pre-existing models and simulations.  
IPME provides a powerful and flexible environment for 
model development in order to analyze human 
performance and stressors.  Future development for 
IPME includes varying operator anthropometry and 
bundling useful, supportive client applications with 
IPME. 

 
Figure 8 shows the HLA Interaction Setup dialogue in 
IPME.  All available user-defined functions in a task 
network model are listed in this dialogue.  The user may 
then select which functions to send as interactions, and 
which to receive as interactions from other federates.  
Function parameters do not need to exactly match 
interaction parameters—extra parameters are either 
ignored (if the extra parameter is in a task network 
function) or set to a value of 0 (if the extra parameter is 
sent from another federate).  
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