

SIMULATION TOOL FOR FUNCTIONAL VERIFICATION
OF TTP/C–BASED SYSTEMS

Petr Grillinger and Pavel Herout
Department of Computer Science

University of West Bohemia
Univerzitní 22, Plzen 30614, Czech Republic

E-mail: pgrillin@kiv.zcu.cz

KEYWORDS

SW tool for simulation, fault injection, brake by wire,
TTP/C protocol, the C language.

ABSTRACT

This article describes a software tool that implements C-
language written simulation model of distributed
embedded computer system that is interconnected by
means of TTP/C protocol. The aim of simulation is to
evaluate specified system’s properties when used as a
safety critical control system. The method that uses
simulated faults to disturb system’s activity was
developed during the solution of the EU/IST project FIT
— Fault Injection for Time Triggered Architecture
(TTA). A utilization of the described simulation tool is
demonstrated when evaluating the time that a TTP/C
cluster that is executing a realistic brake-by-wire control
application needs to stop the car while the braking
process is disturbed by transient faults.

INTRODUCTION

Verification of dependability is one of the most
important steps in the design of a fault-tolerant
embedded computer system. This includes testing the
system’s fault tolerance, i.e. its reaction to real-time
disturbances from its environment and to faults inside
and outside the system. Finding an appropriate
verification method may save a considerable amount of
time, expenses and manpower, therefore it is paid ever-
growing attention. Different experimental verification
methods were suggested so far, mostly using some kind
of fault injection (FI). Fault injection can be performed
on a simulation model of the system to be evaluated, on
a prototype, or on the system itself. Each of these
approaches has its advantages and disadvantages
(flexibility and ease of implementation on the one hand,
more convincing results on the other hand).

The method described here is based on digital
simulation whose output is used both for qualitative and
quantitative evaluation of the tested system properties. It
uses a close-to-real code (C-language) describing the FT
system function together with the computation
dynamics and with a sub-model of the controlled
environment. Thus the system behavior (even in the
presence of faults) can be studied using a conventional
PC workstation. The paper presents some of the results

of the presented method utilization obtained by two
research groups within the EU project IST-1999-10748,
Fault Injection for Time Triggered Architecture (FIT),
see (http://www.cti.ac.at/fit).

The goal of the FIT project was an evaluation of time-
triggered architecture (TTA). This is architecture of
ultra-reliable embedded computer systems aimed to
control cars, planes, trains, etc. (Kopetz 1997; Heiner
and Thurner 1998). Special feature of TTA is fixed
partitioning of node time slots on the bus, which
guarantees predictable time behavior of nodes that are
connected to the bus. The method of access to the bus is
then TDMA (Time Division Multiple Access) instead of
common CSMA (Carrier Sense Multiple Access, used
e.g. by the CAN bus) and one of possible
implementations of the method yields the so-called
TTP/C protocol (Kopetz 1997).

TTP/C is a real-time communication protocol for
interconnection of electronic modules of distributed
fault-tolerant real-time systems. TTP/C is intended to
meet the requirements for SAE class C automotive
applications (TTP/C means Time Triggered Protocol —
C class of SAE requirements). Every node connected to
the bus consists of three main parts:

• communication controller, which executes the
TTP/C protocol (existing C1 chip produced by
TTTech company in Vienna was tested within the
FIT project),

• host processor, which executes a part of an
application program (and has its own I/O interface
to the controlled process),

• dual-port memory, that serves as an interconnection
device between the controller and the host (it is
called CNI — Computer Network Interface).

Nodes connected to the bus form TTP/C cluster. The
basic period of the bus communication activity is called
a TDMA round. Within this round every node has its
own slot assigned to transmit its messages.

The specified properties of TTA architecture have been
evaluated experimentally using the method of fault
injection (FI). The FIT project includes several kinds of
FI, like hardware induced FI (UPV Valencia), software

implemented FI (SWIFI, used by TU Vienna), heavy-
ion impacts on the chip (CTH Gothenburg), etc. The
mentioned methods use the real HW (TTP/C evaluation
cluster produced by TTTech) as an experimental
environment. Another approach is to use simulation
model of the communication controller and/or the whole
TTP/C cluster. Within the project, two levels of
simulation modeling (that differ in abstraction level)
were used. The lower level is a VHDL model of
communication controller itself (used by UPV Valencia,
CTI Karnten). It uses abstractions like gate, pin, etc. and
transient faults like pin_x grounded for one
microsecond, see (http://www.cti.ac.at/fit).

The task of our team was to build a silicon
implementation independent description (C-language
based) of the TTP/C protocol in order to have a precise
and flexible description of specified TTP/C data
structures and functions. In co-operation with TU
Vienna and TTTech, we first built a C-language written
TTP/C specification (so-called C-reference model of
TTP/C protocol). This model was to simulate the
behavior of TTP/C protocol at the level of message
transmission and basic process interaction. Low level
activity simulation (e.g. gates, pin signals, etc.) was not
required — such model was already available in VHDL
(due to its complexity, a VHDL description is not
suitable as reference model).

However, being just a specification, this model is not
executable itself. To verify its correctness and to use it
for the FI purpose, we embedded the C-language written
protocol specification into the C-Sim simulation
environment that allows a Simula-like (coroutine) style
of pseudo-parallel computing (http://www.c-
sim.zcu.cz; Hlavička et al. 2000). The simulation
model of TTP/C was verified by comparison of results
with the other FI techniques — namely the SWIFI
method — see (Ademaj et al. 2002).

This paper describes only in the most basic form the
simulation tool and the TTP/C model itself. It
concentrates more on the possible use of this kind of
model in high-level verification of dependable systems.
As a case study, a real-world application — Brake by
wire 4 (BBW4) — is presented. It is important to notice
that this application is very specific, but the simulation
tool itself, the applied methods and the lower layers of
the software (see table 1 in section 3) are general. This
paper does not intend to propose a new original
approach to simulation; rather it presents a complete
utilization of one particular technique.

C-LANGUAGE BASED SIMULATION
MODELING

The discrete-time simulation modeling principle enables
to run several instances (i.e. processes in simulation
terminology) of TTP/C protocol with their activity
"interleaved" in the global model-time with regard to
local-time flow (microticks/macroticks counters) of

protocol instances. The protocol/controller instances
execute the same program but they have their own data
(i.e. CNI instances). Other processes (e.g. threads of a
control program executed by a host processor, threads
modeling controlled objects, threads of simulation
experimental environment, etc.) can be added without
any unintended mutual time-intrusion effects — only
the speed of simulation depends on the number (and
complexity) of executed processes. The computation is
completely deterministic, so the obtained results are
fully reproducible.

The method needs no special hardware. Typically a PC
station with a C-language development environment
(C++ can be used as well) can be used to develop and to
perform (visualized) FI experiments. Moreover, massive
non-visualized FI experiments can be automatically
performed using “batch mode” execution on a powerful
mainframe-like supercomputer.

The method is general enough (Hlavička et al. 2000),
but we especially present its implementation that was
used within EU/IST FIT project solution for an
experimental validation of TTP/C based system
properties (Herout et al. 2002). The lessons learned
within the FIT project solution identify two main
application areas of the SW implemented fault injection
using C-language based simulation model:

• TTP/C specification level (an earliest and most
abstract development phase of a class of distributed
embedded computer systems architecture): The
presented simulation methodology enables an
evaluation of communication protocol specified
properties, e.g. fail-silence property for a single
TTP/C controller permanent fault, measurement of
time of controller recovery that follows after
transient fault, etc.

• Application level (the final TTP/C system
development phase): Evaluation of a TTP/C based
real-world application, using its C-language source
codes. As the C-Sim based model enables C-
language coded application SW modules to be
incorporated, it is generally possible to use the C-
Sim based and PC station executed development
(evaluation) system instead (or as a counterpart) of
a HW based TTP/C evaluation cluster. The FIT
project results confirm the usefulness of utilization
of the TTP/C cluster simulation model for a
realistic FT application design including fault
injection and a visualization of faults influence.

This article especially concerns the second item stated
above.

SOURCE CODE MODULAR STRUCTURE

In order to achieve a clear and consistent SW structure
with a sufficient degree of portability and reusability,

we introduced a two-dimensional layering of SW
modules.

The first dimension (i.e., the first way of SW layering)
reflects the C-code stability, and consists of three layers
(the letters assigned to individual layers are used as first
and second letters in file names, so the purpose of a
module can be easily identified by looking at its name):

• L — stable code (i.e. libraries, protocol
independent code),

• P — protocol version dependent code,

• A — application-dependent code (e.g., empty
application, sine wave application, brake-by-wire
application etc.).

The second dimension reflects the degree of extension
of C-language code properties:

• F — pure functionality,

• S — simulation, i.e., multithreading ability and
time properties,

• V — visualization of a TTP/C cluster activity.

The second dimension determines the code portability
— F and S layers are ANSI-C written (and use only
ANSI-C standard libraries), so they are generally ANSI-
C portable. Modules of the V layer are C++ Builder
v.5.0 coded and assume the use of 32-bit Windows
operating system.

The modular layering scheme is graphically displayed
in Table 1.

Every module from the structure depicted below may
export its services via an interface to the modules on the
right or below. More details can be found in (Hlavička
et al. 2001; http://www.cti.ac.at/fit).

The described software tool is not designated for wide

non-initiated public as a ready-to-use program. It should
serve programmers in the C programming language to
prepare their own (realistic) application by adding the
C-code of an application. Some parts of the tool can
serve as libraries and it is possible to use these parts as
components in a visual programming environment.
Moreover, there is a possibility to unify the
development process for hardware and software-based
evaluation clusters.

CASE STUDY: BRAKE BY WIRE APPLICATION
The first brake-by-wire application (BBW1) was
proposed in (Lönn 2001) to enable fault injection testing
with transient faults, which can attack arbitrary volatile
information at the TTP/C level, especially controller’s
local data and CNI data. An extended version of this
application, that is closer to reality because it simulates
four wheels instead of just one (BBW4) has been
developed later and this later application is presented
here.

Both BBW application cores were developed by Volvo
Technological Development Corporation in
Matlab/Simulink for the FIT project and then converted
to ANSI C source files.

The BBW application consists of wheel simulation with
ABS controller and vehicle simulation. The current
four-wheel BBW simulation cannot run on the HW
cluster, because it uses floating point variables and
operations. It is possible replace the floating point
arithmetic routines by fixed point routines — this means
however an additional overhead and the development
time of such application would be longer. This shows an
advantage of simulation method that has no restrictions
in this direction.

The Structure and the Principles of Four-Wheel
BBW Simulation

The four-wheel application is very close to reality (the
model of the car provides nine degrees of freedom). All
wheels are simulated, the external vehicle model

 j → code properties extension

 F S V

L ANSI-C library C-Sim kernel C++ Builder library

P FPx SPx VPx

A FAxy SAxy (main) VAxy (main)

↓
code

instability
ANSI-C portable ← → OS dependent

↓
executable

x-axis — TTP/C version, here assumed 1.0, i.e., x = 1
y-axis — cluster configuration + application

Table 1: Source code modular structure

simulates vehicle reactions and the distribution unit
redistributes brake force when a brake failure is
detected. Figure 1 schematically explains the
interconnection of individual modules.

Individual parts of the simulation:

a) Vehicle simulation — the vehicle simulation is
based on the behavior of the Volvo V70 car and
except when moving with low speeds its behavior
is practically the same. The vehicle simulation runs
with a period of 500 microseconds. The simulation
uses one parameter (initial vehicle speed) at the
beginning of the simulation and four input variables
in each simulation step. These variables are:
Brakel_Force vector, Traction_Torque vector,
Steering_Angle vector and Adhesion vector. All
vectors have four members, one for each wheel.
The Brake_Force is given in N units,
Traction_Torque in Nm units, the Steer_Angle in
radians and the Adhesion is a non-dimensional
value from 0.0 (ice) to 1.0 (dry tarmac). These four
vectors are used to control the experiment during
the simulation. The outputs from vehicle simulation
are: Wheel_Speed vector and Vehicle_Speed
vector (in heading direction, m/s). Heading angle in
radians and global x-axis and y-axis position (m).
The ABS controller uses the output values to
compute the final Brake_Force. All output and
input values are 8 byte floating-point variables or
vectors.

b) Distribution unit — the distribution unit is
introduced to reduce the effect of brake faults. This
unit uses as its input the requested Brake_Torque
sent by the pedal node and Fault_Vector, which is
derived from TTP/C model (using membership

service provided by the TTP/C protocol
complemented at application level with comparison
of messages from both replicas). Each bit in this
array corresponds to one wheel — a value of 1
signalizes that the brake system at this wheel failed.
The distribution unit computes the output
Brake_Force from the requested Brake_Torque,
the multiplier factor (set for each wheel in the
actual situation), and from the fact whether the
wheel is front or rear (the brake force distribution is
65% for front wheels and 35% for rear wheels).

c) ABS controller — The ABS controller does not
compute the final brake force, it only uses the input
brake force obtained from the Distribution unit and
then decides whether the Brake_Force will be zero
or the input value. Its decision depends on the
second and the third input values — the
Wheel_Speed and the Vehicle_Speed; the
difference between these two values starts or stops
the function of the ABS controller. These two
modules (distribution and ABS controller) run with
period of 4 milliseconds, it means that these
simulations have eight times longer period than the
vehicle simulation. This is convenient for our
TTP/C simulation because the cluster cycle has the
same length, which makes scheduling easier.

TTP/C Model of Four-Wheel Brake by Wire

The simulation is run on 10 nodes divided into two
categories. At every wheel brake are two replicated
controlling nodes (8 nodes altogether), and at the brake
pedal different two nodes measure the pedal’s position.
The vehicle motion, brake force distribution and ABS
controller status is updated externally in a separate
thread. This structure of the application was obtained

Figure 1: Detailed Structure of Four-Wheel BBW Simulation

from Volvo Company and it is difficult to divide into
four (or eight) parts. The distribution unit and the ABS
controller routines can run on every wheel node. This
division means that the simulation status (internal
variables of the model) is updated only at one place in
the simulation, but the function that computes the
Brake_Force for a wheel is distributed among all
(eight) wheel nodes.

The application task of a wheel node (executed in real-
world directly by the node’s host computer) can be
divided into four steps:

• The first step is reading of the values of
Brake_Force sent by other wheel nodes during the
last TDMA round and their comparison. The node
compares corresponding values sent by wheel
nodes of other wheels. This comparison is used to
set up the fault vector for wheel node — i.e. its own
view of the cluster situation.

• The second step is reading the Brake_Torque sent
by two pedal nodes. In case that the read values are
identical, their value is used for the new
Brake_Force computing function; otherwise brake
force equal to 0 is used.

• The third step is Brake_Force computing. In this
phase the node uses the functions developed by
Volvo. These functions use Brake_Torque, their
individual image of Fault_Vector, their

Wheel_Speed and Vehicle_Speed as an input.

• In the last step the application writes the actual
value of Brake_Force into the CNI for the next
transmission slot.

Cluster and Message Structure

As was mentioned before, the model runs 10 nodes
coupled into five pairs. For better understanding of the
structure we can look at figure 2.

We divide the cluster cycle into two TDMA rounds. In
the first TDMA round all nodes send N-frames (frames
with application data content) on the bus; in the second
round all nodes send I-frames (these frames contain no
application data, they contain current cluster state that
can be used for reintegration). Each sending slot is 200
µs long.

Multiple I-frames help the nodes to reintegrate after a
breakdown in situation when multiple nodes break
down as a consequence of a stream of faults. We could
send I-frames by pedal nodes or by wheel nodes only.
However, it is quite dangerous to send I-frames only by
the pedal nodes, because both pedal nodes could fall out
and then no node could reintegrate into the cluster. The
second option is irrelevant due to a different reason: the
danger that there will be no running node that will send
I-frames is very low, but we need much more
information about how the brakes really work, than the
information about the brake pedal status. In a real

Figure 2: BBW4 TTP/C Cluster Structure and Data Flow

application the brake pedal value change will be slow if
we know that the ABS controller period is only 4
milliseconds long, so there is no reason to refrain from
sending of I-frames by the pedals nodes.

Fault Detection Mechanisms

Fault detection is the main task of safety critical
applications when faults are introduced into the system.
The application has to be fault-tolerant or at least be
able to minimize the influence of the fault. Our
application is the second case, because when we use
only two nodes for each wheel we cannot develop a
fault-tolerant application for each wheel, but we can
detect a fault by comparing outputs from wheel nodes,
and correct the fault consequences by changing the
application parameters using the distribution unit.

The fault detection mechanism in our application is
used twice.

• An application task uses the data sent on TTP/C
bus. The Fault_Vector is used in the distribution
unit to minimize the influence of a fault.

• In the vehicle simulation thread that simulates
actuators on each wheel that receive the value of
Brake_Force from nodes on the wheel sent by I/O
communication from the nodes. This unit needs to
have two identical values on its input; otherwise it
cannot decide which value to use and performs no
action.

Fault Detection in Wheel Node Task.

Three fault detection routines are executed during the
wheel node task. The first serves to detect a fault in the
actual node or its replica. The wheel node reads
messages sent by both nodes from CNI Message Area
and compares them. The result of the comparison is
equal or not equal. When the messages are different, the
wheel node increases total fault counter together with
continuous fault counter. Total fault counter is
information about the wheel stability only, but the
continuous fault counter is used to limit future failures
— when the continuous fault counter reaches 5 the node
automatically restarts itself (then a self-test can be
performed). These counters can be also incremented in
one other case — when the wheel node cannot read
valid data from its message stored in CNI.

The second test is used to create node's own overview of
the whole cluster situation. The node tries to detect
wheels that do not work properly, i.e. both nodes are
broken down or the nodes send different data or send
invalid data. The obtained information is used for
Fault_Vector set-up — each node has its own copy of
this vector.

The third test is used for Brake_Torque (BT) signal
validation. The wheel node compares the values sent by

Pedal nodes and sets a new BT value if they are equal or
sets the BT value to 0 if they are different.

Types of Tests

The tests have to show that it would be possible to stop
the vehicle in spite of faults injected into TTP/C nodes
or the bus and in the best case the car would not slip
from the straight direction. BBW4 minimizes the
influence of faults by a brake force distribution
mechanism. The use of this mechanism is enabled by
the TTP/C cluster services — membership service, node
replication, channel (and frame) replication and time
synchronization.

A fault injection experiment can be organized in several
ways:

• White-box FI — the faults are targeted into exact
locations and/or injected at exact points in time.
Such experiments are used often to verify a
particular hypothesis (e.g. clock synchronization).

• Black-box FI — the faults are injected at random
intervals and hit random targets in the modeled
system. This experiment organization is suitable to
prove general resistance to FI. A fault model that is
close to reality is essential.

In our case a variant of black-box FI has been applied
primarily — pseudo-random stochastic FI.

Stochastic Fault Injection.

This method utilizes streams of faults (mostly Gaussian
or Poisson streams) that are controlled by a pseudo-
random number generator. Our basic fault model is a
short burst of single-bit flips (sequence of several bit-
sized faults) that is repeated within a stream with mean
period larger than the duration of a single burst. This
fault model simulates reoccurring transient problems of
the chosen node (e.g. EMI effects) or transient
malfunction of node’s sensors, depending on the target
of FI.

Selected results

A simple fault injection experiment was chosen for
demonstration. It was stated that the brake force
distribution mechanism should be able to minimize
unwanted effects of a brake failure. To work properly
the mechanism requires an accurate and up-to-date fault
vector. Braking force to be applied to individual wheels
is determined for the current communication period
using fault vector from previous period. This means that
when the fault vector changes frequently the force
distribution mechanism’s performance can degrade
significantly and the braking distance may be longer
than when a permanent brake failure occurs. This
theory can be easily verified by the model when we run
experiments with different frequencies of faults. Very
high frequency of faults can be used to simulate a

permanent failure (the period must be shorter than the
fastest node recovery time, which is 1 TDMA round).

Table 2 bellow summarizes the output received from
braking trajectory measurement for different fault
injection frequencies (the fault is simultaneous
shutdown of both replicas at the rear left wheel).
Observations of the car behavior in the presence of
faults have revealed that the distribution mechanism
over-compensates the failed brake in time, so the
vehicle starts drifting in the opposite direction (then the
effect is reversed, so the car moves from left to right and
back). This makes measurement of current Y-Axis
position almost useless, so the table below lists only the
maximum deviation in the Y-axis (max. lateral
movement).

The intensity of fault injection is given as a ratio of
fault-injected TDMA rounds to total number of TDMA
rounds. For example “1:10” ratio means 1 fault in 10
TDMA rounds. The special value “0:–” means that no
FI was performed and the ratio 1:1 means that a fault is
injected in every TDMA round (this is a simple model
of permanent failure).

FI Ratio
[faulty : total]

Traveled
distance [m]

Max. lateral
movement [m]

0 : – 56.67 0.00

1 : 10 60.53 0.41

1 : 5 75.57 0.38

1 : 3 79.65 0.38

1 : 2 128.64 2.45

1 : 1 89.73 1.29

Table 2: Braking results for different FI frequencies

The first row in table 2 contains measurement of the
braking process under optimal conditions, i.e. no fault
injection was applied. This provides us with reference
values, so we can compare the values retrieved with
different fault injection settings. The lower rows in the
table gradually increase fault intensity and we can see
that the measured travelled distance and lateral
movement increase accordingly — except for the FI
ratio “1:2”. In this case the overall braking distance and
maximum lateral deviation is significantly larger than
for other FI ratios (even for higher fault frequencies).
This behaviour is caused by the brake-force distribution
mechanism that shows a possibly dangerous instability
to certain fault frequencies (the algorithm assumes that
current state will be valid for the next communication
period and this FI frequency invalidates the
assumption). This confirms the previously stated
hypothesis (in italics at the beginning of this section)
and gives us a rough worst-case braking scenario.

A snapshot of the BBW4 application used to gather the
presented results (its visualization) is displayed in figure

3. The application can be easily altered to inject
different kind of faults, e.g. to inject into different
combination of nodes or to inject only during certain
protocol execution phase.

ADVANTAGES AND POSSIBLE DEPLOYMENT
The method of simulation-based verification of safety
critical systems is not new and many sources deal with
simulation modeling at different architectural levels.
What makes our method unique is its wide usability:

• Functional reference model: the C-language model
of the system’s interconnection protocol can be
used from the early stages of development as an
exact definition of the protocol (e.g. more exact
than a written semi-formal specification). Parts of
the code can be verified separately. This enables to
perform various experiments in early stages of new
protocol version preparation. In later stages the
exact C-model serves as reference for any HW
based implementation.

• Executable model: The functional protocol
reference model can be embedded within a
simulation environment (in our case the C-Sim
library) to provide the basis for building executable
models of the whole system including applications.
An application can be developed and debugged
relatively easily using the model even when the
modeled device is not yet available. Using a wide
set of simulation applications (specially designed
for testing, i.e. not necessary real-world
applications), it is possible to generalize the
obtained results. We can easily implement different
fault tolerant mechanisms (active replication, TMR,
repeated execution, etc.) and evaluate the
effectiveness of these different approaches.

• Real-world applications: The ANSI standard of C
language, which is used, enables to link the model
with any C-written application. This is important
because today, most industrial applications (for
embedded computers) are written in C language.
There are two possible ways to utilize this: We can
take an existing application and verify it under
arbitrarily severe conditions (unlikely to happen in
the normal operating environment). The second
utilization is to develop a completely new
application using the model and after thorough
verification and debugging port this application into
the real device. This porting requires usually only
minor modifications to the source code. The
simplicity of the porting process (resulting from the
same used programming language) reduces the
probability that a fault in the application will be
introduced during the transformation.

• Portability and performance: The simulation can
run on any system that provides a C language
compiler (this means almost every computer

system). The experiments were done on several
platforms, including: PC with Linux, Windows NT
and Windows XP, supercomputer Digital
AlphaServer 8400 5/300 with Digital UNIX V4.0E.
The performance of the model is determined mainly
by the applications design (i.e. number of nodes,
computation complexity). For example, on the a
1.4GHz PC the synthetic application sine wave
(4 nodes) executes approximately four times faster
than real-time and the real-world application
BBW4 with 10 nodes executes at half speed of real-
time.

• Analyzability of results: Because C-Sim based
simulation is fully deterministic, we are able to
analyze discovered problems at arbitrary level of
detail. This enables to pinpoint to source of a
problem exactly, i.e. to find whether the problem is
caused by a faulty implementation or by a flaw in
the system design.

• Abstraction level — Limits possible fault injection
targets. In our case we are able to perform FI into
any memory field of TTP/C that is defined in the
official specification, into transmitted messages and
into any application defined field. It is impossible
to influence internal registers (not covered by the
specification) and code.

• Fault Nature — only memory based faults are
possible, moreover permanent faults are difficult to
simulate.

• Set-up difficulty — depends on the application and
availability of a ready-to-use solution (as the
BBW4 made by Volvo). To build a model from
scratch is very time-consuming.

• Reusability — different for all parts of the model.
The C-Sim tool is highly reusable and the TTP/C C
reference model can be without any difficulty used
for any other application. The real-world
application is bound to a particular purpose and
cannot be used anywhere else except the real
device.

CONCLUSIONS

The presented case study (the BBW4 application) shows
many of the benefits that a simulation can offer. The
most obvious one is that a HW implementation would
not even be possible in advance. Moreover, the
simulation tool enables us to add a visual user interface
to the model as well as a fault injection capability. Such
an interface can be used either for more sophisticated
experiments or for demonstration purposes, as it
interactively displays the current state of simulation.

It is obvious that evaluation and verification based on
simulation can never provide complete assurance of the
safety of the modeled system or application. In reality
this cannot be guaranteed by any single verification
method. The advantages of our approach are clearly
stated in section Advantages and Possible Deployment.

Usefulness of the described approach and mainly the
mentioned case-study (BBW4) was proven within the
EU FIT project (Final report of the FIT project 2002).

Figure 3: Captured screen from the visualized BBW4 application

The model of a newer version of the TTP/C protocol
(the C2 chip) is currently developed and in the future we
plan to adapt the testing tools to this new model. Also
the current BBW4 application should be extended to
allow a wider range of experiments.

ACKNOWLEDGMENT

The research was in part supported by a grant of 5th
Framework Program Information Societies Technology:
IST-1999-10748 Fault Injection for Time Triggered
Architecture (FIT). Theoretical part of work was
supported by the Ministry of Education of the Czech
Republic, project no. MSM-235200005: Information
systems and Technologies.

REFERENCES
Ademaj, A.; P. Grillinger; P. Herout; and J. Hlavička. 2002.

“Fault Tolerance Evaluation using two Software
Implemented Fault Injection Methods”. In IEEE
International On-Line Testing Workshop (IOLTW 2002),
Isle of Bendor, France, July 2002, pp. 21-25.

Final report of the FIT project, IST-1999-10748.
Grillinger, P. and S. Racek. 2002. “Transient faults robustness

evaluation of safety critical systems using simulation”. In
Baltic Electronic Conference (BEC 2002), Tallinn,
Estonia, October 2002.

Heiner, G. and T. Thurner. 1998. “Time-triggered architecture
for safety-related distributed real-time systems in
transportation systems”. In Proceedings of FTCS-28.
Munich, Germany, pp. 402–407.

Hlavička, J.; S. Racek; and P. Herout. 2001. “Modeling a
Fault-Tolerant Multiprocessor System”. In IEEE
Conference EUROCON 2001. Bratislava (Slovakia), July
2001, pp. 544-547.

Hlavička, J.; S. Racek; and P. Herout. 2000. “Evaluation of
process controller fault tolerance using simulation”. In
Simulation Practice and Theory. Volume 7, Issue 8, 15th
March 2000, pp. 769-790.

 Herout, P.; S. Racek; and J. Hlavička. 2002. “Model-based
dependability evaluation method for TTP/C based
systems”. In Proceedings of European Dependable
Computing Conference (EDCC-4). Toulouse, France,
October 2002, pp. 271-282.

Krejzek, T. 2002. Verification of Application Reliability in
TTA. Master Thesis. Czech Technical University in
Prague, June 2002.

Kopetz, H. 1997. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 1997

Laprie, J.C. 1992. Dependability: Basic concepts and
terminology. Springer-Verlag Wien New York, 1992, 265
pp.

Lönn, H. 2001. Brake by wire status report. Status report of
the EU FIT project, Prague.

Manzone, A. et al. 2001. “Fault tolerant automotive systems:
An overview”. In Proceedings of 7th Int'l On-Line Testing
Workshop. Taormina, Italy, July 2001, pp. 117-121.

http://www.c-sim.zcu.cz — Home pages of the C-Sim
simulation tool.

http://www.cti.ac.at/fit — Home pages of EU project Fault
Injection for TTA (FIT).

AUTHOR BIOGRAPHIES

PETR GRILLINGER was born in Czech Republic and
went to the University of West Bohemia in Pilsen where
he studied computer engineering and obtained his
degree in 2001. He finished his master thesis as a part of
the EU project FIT and now continues his PhD study of
simulation based fault injection techniques at the same
university. His e-mail is: pgrillin@kiv.zcu.cz and
his web-page can be found at the address
http://www.kiv.zcu.cz/~pgrillin

PAVEL HEROUT was born in Czech Republic. He
graduated in 1985 at the Institute of Technology in
Pilsen in specialization Electronic computers. In 1999
he defended his PhD thesis in computer science. He
works as a teacher at the University of West Bohemia in
Pilsen and delivers lectures and seminars in subjects
Object Oriented Programming, Programming in the C
Language and Desktop Publishing. His professional
interests are programming languages, simulations and
fault-tolerant computing. His e-mail address is:
herout@kiv.zcu.cz and his web-page can be found
at http://www.kiv.zcu.cz/~herout

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

