
  
 

   

SIMULATION TOOL FOR FUNCTIONAL VERIFICATION  
OF TTP/C–BASED SYSTEMS 

 
Petr Grillinger and Pavel Herout 
Department of Computer Science 

University of West Bohemia 
Univerzitní 22, Plzen 30614, Czech Republic 

E-mail: pgrillin@kiv.zcu.cz 
 

 

KEYWORDS 

SW tool for simulation, fault injection, brake by wire, 
TTP/C protocol, the C language. 

ABSTRACT 

This article describes a software tool that implements C-
language written simulation model of distributed 
embedded computer system that is interconnected by 
means of TTP/C protocol. The aim of simulation is to 
evaluate specified system’s properties when used as a 
safety critical control system. The method that uses 
simulated faults to disturb system’s activity was 
developed during the solution of the EU/IST project FIT 
— Fault Injection for Time Triggered Architecture 
(TTA). A utilization of the described simulation tool is 
demonstrated when evaluating the time that a TTP/C 
cluster that is executing a realistic brake-by-wire control 
application needs to stop the car while the braking 
process is disturbed by transient faults. 

INTRODUCTION 

Verification of dependability is one of the most 
important steps in the design of a fault-tolerant 
embedded computer system. This includes testing the 
system’s fault tolerance, i.e. its reaction to real-time 
disturbances from its environment and to faults inside 
and outside the system. Finding an appropriate 
verification method may save a considerable amount of 
time, expenses and manpower, therefore it is paid ever-
growing attention. Different experimental verification 
methods were suggested so far, mostly using some kind 
of fault injection (FI). Fault injection can be performed 
on a simulation model of the system to be evaluated, on 
a prototype, or on the system itself. Each of these 
approaches has its advantages and disadvantages 
(flexibility and ease of implementation on the one hand, 
more convincing results on the other hand).  

The method described here is based on digital 
simulation whose output is used both for qualitative and 
quantitative evaluation of the tested system properties. It 
uses a close-to-real code (C-language) describing the FT 
system function together with the computation 
dynamics and with a sub-model of the controlled 
environment. Thus the system behavior (even in the 
presence of faults) can be studied using a conventional 
PC workstation. The paper presents some of the results 

of the presented method utilization obtained by two 
research groups within the EU project IST-1999-10748,  
Fault Injection for Time Triggered Architecture (FIT), 
see (http://www.cti.ac.at/fit). 

The goal of the FIT project was an evaluation of time-
triggered architecture (TTA). This is architecture of 
ultra-reliable embedded computer systems aimed to 
control cars, planes, trains, etc. (Kopetz 1997; Heiner 
and Thurner 1998). Special feature of TTA is fixed 
partitioning of node time slots on the bus, which 
guarantees predictable time behavior of nodes that are 
connected to the bus. The method of access to the bus is 
then TDMA (Time Division Multiple Access) instead of 
common CSMA (Carrier Sense Multiple Access, used 
e.g. by the CAN bus) and one of possible 
implementations of the method yields the so-called 
TTP/C protocol (Kopetz 1997). 

TTP/C is a real-time communication protocol for 
interconnection of electronic modules of distributed 
fault-tolerant real-time systems. TTP/C is intended to 
meet the requirements for SAE class C automotive 
applications (TTP/C means Time Triggered Protocol — 
C class of SAE requirements). Every node connected to 
the bus consists of three main parts: 

• communication controller, which executes the 
TTP/C protocol (existing C1 chip produced by 
TTTech company in Vienna was tested within the 
FIT project), 

• host processor, which executes a part of an 
application program (and has its own I/O interface 
to the controlled process), 

• dual-port memory, that serves as an interconnection 
device between the controller and the host (it is 
called CNI — Computer Network Interface). 

Nodes connected to the bus form TTP/C cluster. The 
basic period of the bus communication activity is called 
a TDMA round. Within this round every node has its 
own slot assigned to transmit its messages. 

The specified properties of TTA architecture have been 
evaluated experimentally using the method of fault 
injection (FI). The FIT project includes several kinds of 
FI, like hardware induced FI (UPV Valencia), software 



  
 

   

implemented FI (SWIFI, used by TU Vienna), heavy-
ion impacts on the chip (CTH Gothenburg), etc. The 
mentioned methods use the real HW (TTP/C evaluation 
cluster produced by TTTech) as an experimental 
environment. Another approach is to use simulation 
model of the communication controller and/or the whole 
TTP/C cluster. Within the project, two levels of 
simulation modeling (that differ in abstraction level) 
were used. The lower level is a VHDL model of 
communication controller itself (used by UPV Valencia, 
CTI Karnten). It uses abstractions like gate, pin, etc. and 
transient faults like pin_x grounded for one 
microsecond, see (http://www.cti.ac.at/fit).  

The task of our team was to build a silicon 
implementation independent description (C-language 
based) of the TTP/C protocol in order to have a precise 
and flexible description of specified TTP/C data 
structures and functions. In co-operation with TU 
Vienna and TTTech, we first built a C-language written 
TTP/C specification (so-called C-reference model of 
TTP/C protocol). This model was to simulate the 
behavior of TTP/C protocol at the level of message 
transmission and basic process interaction. Low level 
activity simulation (e.g. gates, pin signals, etc.) was not 
required — such model was already available in VHDL 
(due to its complexity, a VHDL description is not 
suitable as reference model). 

However, being just a specification, this model is not 
executable itself. To verify its correctness and to use it 
for the FI purpose, we embedded the C-language written 
protocol specification into the C-Sim simulation 
environment that allows a Simula-like (coroutine) style 
of pseudo-parallel computing (http://www.c-
sim.zcu.cz; Hlavička et al. 2000). The simulation 
model of TTP/C was verified by comparison of results 
with the other FI techniques — namely the SWIFI 
method — see (Ademaj et al. 2002).  

This paper describes only in the most basic form the 
simulation tool and the TTP/C model itself. It 
concentrates more on the possible use of this kind of 
model in high-level verification of dependable systems. 
As a case study, a real-world application — Brake by 
wire 4 (BBW4) — is presented. It is important to notice 
that this application is very specific, but the simulation 
tool itself, the applied methods and the lower layers of 
the software (see table 1 in section 3) are general. This 
paper does not intend to propose a new original 
approach to simulation; rather it presents a complete 
utilization of one particular technique. 

C-LANGUAGE BASED SIMULATION 
MODELING 

The discrete-time simulation modeling principle enables 
to run several instances (i.e. processes in simulation 
terminology) of TTP/C protocol with their activity 
"interleaved" in the global model-time with regard to 
local-time flow (microticks/macroticks counters) of 

protocol instances. The protocol/controller instances 
execute the same program but they have their own data 
(i.e. CNI instances). Other processes (e.g. threads of a 
control program executed by a host processor, threads 
modeling controlled objects, threads of simulation 
experimental environment, etc.) can be added without 
any unintended mutual time-intrusion effects — only 
the speed of simulation depends on the number (and 
complexity) of executed processes. The computation is 
completely deterministic, so the obtained results are 
fully reproducible. 

The method needs no special hardware. Typically a PC 
station with a C-language development environment 
(C++ can be used as well) can be used to develop and to 
perform (visualized) FI experiments. Moreover, massive 
non-visualized FI experiments can be automatically 
performed using “batch mode” execution on a powerful 
mainframe-like supercomputer. 

The method is general enough (Hlavička et al. 2000), 
but we especially present its implementation that was 
used within EU/IST FIT project solution for an 
experimental validation of TTP/C based system 
properties (Herout et al. 2002). The lessons learned 
within the FIT project solution identify two main 
application areas of the SW implemented fault injection 
using C-language based simulation model: 

• TTP/C specification level (an earliest and most 
abstract development phase of a class of distributed 
embedded computer systems architecture): The 
presented simulation methodology enables an 
evaluation of communication protocol specified 
properties, e.g. fail-silence property for a single 
TTP/C controller permanent fault, measurement of 
time of controller recovery that follows after 
transient fault, etc. 

• Application level (the final TTP/C system 
development phase): Evaluation of a TTP/C based 
real-world application, using its C-language source 
codes. As the C-Sim based model enables C-
language coded application SW modules to be 
incorporated, it is generally possible to use the C-
Sim based and PC station executed development 
(evaluation) system instead (or as a counterpart) of 
a HW based TTP/C evaluation cluster. The FIT 
project results confirm the usefulness of utilization 
of the TTP/C cluster simulation model for a 
realistic FT application design including fault 
injection and a visualization of faults influence. 

This article especially concerns the second item stated 
above. 

SOURCE CODE MODULAR STRUCTURE 

In order to achieve a clear and consistent SW structure 
with a sufficient degree of portability and reusability, 



  
 

   

we introduced a two-dimensional layering of SW 
modules. 

The first dimension (i.e., the first way of SW layering) 
reflects the C-code stability, and consists of three layers 
(the letters assigned to individual layers are used as first 
and second letters in file names, so the purpose of a 
module can be easily identified by looking at its name): 

• L — stable code (i.e. libraries, protocol 
independent code), 

• P — protocol version dependent code, 

• A — application-dependent code (e.g., empty 
application, sine wave application, brake-by-wire 
application etc.). 

The second dimension reflects the degree of extension 
of C-language code properties: 

• F — pure functionality, 

• S — simulation, i.e., multithreading ability and 
time properties, 

• V — visualization of a TTP/C cluster activity. 

The second dimension determines the code portability 
— F and S layers are ANSI-C written (and use only 
ANSI-C standard libraries), so they are generally ANSI-
C portable. Modules of the V layer are C++ Builder 
v.5.0 coded and assume the use of 32-bit Windows 
operating system. 

The modular layering scheme is graphically displayed 
in Table 1. 

Every module from the structure depicted below may 
export its services via an interface to the modules on the 
right or below. More details can be found in (Hlavička 
et al. 2001; http://www.cti.ac.at/fit). 

The described software tool is not designated for wide 

non-initiated public as a ready-to-use program. It should 
serve programmers in the C programming language to 
prepare their own (realistic) application by adding the 
C-code of an application. Some parts of the tool can 
serve as libraries and it is possible to use these parts as 
components in a visual programming environment. 
Moreover, there is a possibility to unify the 
development process for hardware and software-based 
evaluation clusters. 

CASE STUDY: BRAKE BY WIRE APPLICATION 
The first brake-by-wire application (BBW1) was 
proposed in (Lönn 2001) to enable fault injection testing 
with transient faults, which can attack arbitrary volatile 
information at the TTP/C level, especially controller’s 
local data and CNI data. An extended version of this 
application, that is closer to reality because it simulates 
four wheels instead of just one (BBW4) has been 
developed later and this later application is presented 
here.  

Both BBW application cores were developed by Volvo 
Technological Development Corporation in 
Matlab/Simulink for the FIT project and then converted 
to ANSI C source files.  

The BBW application consists of wheel simulation with 
ABS controller and vehicle simulation. The current 
four-wheel BBW simulation cannot run on the HW 
cluster, because it uses floating point variables and 
operations. It is possible replace the floating point 
arithmetic routines by fixed point routines — this means 
however an additional overhead and the development 
time of such application would be longer. This shows an 
advantage of simulation method that has no restrictions 
in this direction. 

The Structure and the Principles of Four-Wheel 
BBW Simulation 

The four-wheel application is very close to reality (the 
model of the car provides nine degrees of freedom). All 
wheels are simulated, the external vehicle model 

  j → code properties extension 

  F S V 

L ANSI-C library C-Sim kernel C++ Builder library 

P FPx SPx VPx 

 

A FAxy SAxy (main) VAxy (main) 

 

↓ 
code 

instability 
ANSI-C portable ← → OS dependent 

↓ 
executable

x-axis — TTP/C version, here assumed 1.0, i.e., x = 1 
y-axis — cluster configuration + application 

Table 1: Source code modular structure 



  
 

   

simulates vehicle reactions and the distribution unit 
redistributes brake force when a brake failure is 
detected. Figure 1 schematically explains the 
interconnection of individual modules. 

Individual parts of the simulation: 

a) Vehicle simulation — the vehicle simulation is 
based on the behavior of the Volvo V70 car and 
except when moving with low speeds its behavior 
is practically the same. The vehicle simulation runs 
with a period of 500 microseconds. The simulation 
uses one parameter (initial vehicle speed) at the 
beginning of the simulation and four input variables 
in each simulation step. These variables are: 
Brakel_Force vector, Traction_Torque vector, 
Steering_Angle vector and Adhesion vector. All 
vectors have four members, one for each wheel. 
The Brake_Force is given in N units, 
Traction_Torque in Nm units, the Steer_Angle in 
radians and the Adhesion is a non-dimensional 
value from 0.0 (ice) to 1.0 (dry tarmac). These four 
vectors are used to control the experiment during 
the simulation. The outputs from vehicle simulation 
are: Wheel_Speed vector and Vehicle_Speed 
vector (in heading direction, m/s). Heading angle in 
radians and global x-axis and y-axis position (m). 
The ABS controller uses the output values to 
compute the final Brake_Force. All output and 
input values are 8 byte floating-point variables or 
vectors. 

b) Distribution unit — the distribution unit is 
introduced to reduce the effect of brake faults. This 
unit uses as its input the requested Brake_Torque 
sent by the pedal node and Fault_Vector, which is 
derived from TTP/C model (using membership 

service provided by the TTP/C protocol 
complemented at application level with comparison 
of messages from both replicas). Each bit in this 
array corresponds to one wheel — a value of 1 
signalizes that the brake system at this wheel failed. 
The distribution unit computes the output 
Brake_Force from the requested Brake_Torque, 
the multiplier factor (set for each wheel in the 
actual situation), and from the fact whether the 
wheel is front or rear (the brake force distribution is 
65% for front wheels and 35% for rear wheels). 

c) ABS controller — The ABS controller does not 
compute the final brake force, it only uses the input 
brake force obtained from the Distribution unit and 
then decides whether the Brake_Force will be zero 
or the input value. Its decision depends on the 
second and the third input values — the 
Wheel_Speed and the Vehicle_Speed; the 
difference between these two values starts or stops 
the function of the ABS controller. These two 
modules (distribution and ABS controller) run with 
period of 4 milliseconds, it means that these 
simulations have eight times longer period than the 
vehicle simulation. This is convenient for our 
TTP/C simulation because the cluster cycle has the 
same length, which makes scheduling easier. 

TTP/C Model of Four-Wheel Brake by Wire 

The simulation is run on 10 nodes divided into two 
categories. At every wheel brake are two replicated 
controlling nodes (8 nodes altogether), and at the brake 
pedal different two nodes measure the pedal’s position. 
The vehicle motion, brake force distribution and ABS 
controller status is updated externally in a separate 
thread. This structure of the application was obtained 

Figure 1: Detailed Structure of Four-Wheel BBW Simulation 



  
 

   

from Volvo Company and it is difficult to divide into 
four (or eight) parts. The distribution unit and the ABS 
controller routines can run on every wheel node. This 
division means that the simulation status (internal 
variables of the model) is updated only at one place in 
the simulation, but the function that computes the 
Brake_Force for a wheel is distributed among all 
(eight) wheel nodes. 

The application task of a wheel node (executed in real-
world directly by the node’s host computer) can be 
divided into four steps: 

• The first step is reading of the values of 
Brake_Force sent by other wheel nodes during the 
last TDMA round and their comparison. The node 
compares corresponding values sent by wheel 
nodes of other wheels. This comparison is used to 
set up the fault vector for wheel node — i.e. its own 
view of the cluster situation. 

• The second step is reading the Brake_Torque sent 
by two pedal nodes. In case that the read values are 
identical, their value is used for the new 
Brake_Force computing function; otherwise brake 
force equal to 0 is used. 

• The third step is Brake_Force computing. In this 
phase the node uses the functions developed by 
Volvo. These functions use Brake_Torque, their 
individual image of Fault_Vector, their 

Wheel_Speed and Vehicle_Speed as an input. 

• In the last step the application writes the actual 
value of Brake_Force into the CNI for the next 
transmission slot. 

Cluster and Message Structure 

As was mentioned before, the model runs 10 nodes 
coupled into five pairs. For better understanding of the 
structure we can look at figure 2. 

We divide the cluster cycle into two TDMA rounds. In 
the first TDMA round all nodes send N-frames (frames 
with application data content) on the bus; in the second 
round all nodes send I-frames (these frames contain no 
application data, they contain current cluster state that 
can be used for reintegration). Each sending slot is 200 
µs long. 

Multiple I-frames help the nodes to reintegrate after a 
breakdown in situation when multiple nodes break 
down as a consequence of a stream of faults. We could 
send I-frames by pedal nodes or by wheel nodes only. 
However, it is quite dangerous to send I-frames only by 
the pedal nodes, because both pedal nodes could fall out 
and then no node could reintegrate into the cluster. The 
second option is irrelevant due to a different reason: the 
danger that there will be no running node that will send 
I-frames is very low, but we need much more 
information about how the brakes really work, than the 
information about the brake pedal status. In a real 

Figure 2: BBW4 TTP/C Cluster Structure and Data Flow 



  
 

   

application the brake pedal value change will be slow if 
we know that the ABS controller period is only 4 
milliseconds long, so there is no reason to refrain from 
sending of I-frames by the pedals nodes. 

Fault Detection Mechanisms 

Fault detection is the main task of safety critical 
applications when faults are introduced into the system. 
The application has to be fault-tolerant or at least be 
able to minimize the influence of the fault. Our 
application is the second case, because when we use 
only two nodes for each wheel we cannot develop a 
fault-tolerant application for each wheel, but we can 
detect a fault by comparing outputs from wheel nodes, 
and correct the fault consequences by changing the 
application parameters using the distribution unit. 

The fault detection mechanism in our application is 
used twice. 

• An application task uses the data sent on TTP/C 
bus. The Fault_Vector is used in the distribution 
unit to minimize the influence of a fault. 

• In the vehicle simulation thread that simulates 
actuators on each wheel that receive the value of 
Brake_Force from nodes on the wheel sent by I/O 
communication from the nodes. This unit needs to 
have two identical values on its input; otherwise it 
cannot decide which value to use and performs no 
action. 

Fault Detection in Wheel Node Task. 

Three fault detection routines are executed during the 
wheel node task. The first serves to detect a fault in the 
actual node or its replica. The wheel node reads 
messages sent by both nodes from CNI Message Area 
and compares them. The result of the comparison is 
equal or not equal. When the messages are different, the 
wheel node increases total fault counter together with 
continuous fault counter. Total fault counter is 
information about the wheel stability only, but the 
continuous fault counter is used to limit future failures 
— when the continuous fault counter reaches 5 the node 
automatically restarts itself (then a self-test can be 
performed). These counters can be also incremented in 
one other case — when the wheel node cannot read 
valid data from its message stored in CNI. 

The second test is used to create node's own overview of 
the whole cluster situation.  The node tries to detect 
wheels that do not work properly, i.e. both nodes are 
broken down or the nodes send different data or send 
invalid data. The obtained information is used for 
Fault_Vector set-up — each node has its own copy of 
this vector. 

The third test is used for Brake_Torque (BT) signal 
validation. The wheel node compares the values sent by 

Pedal nodes and sets a new BT value if they are equal or 
sets the BT value to 0 if they are different. 

Types of Tests 

The tests have to show that it would be possible to stop 
the vehicle in spite of faults injected into TTP/C nodes 
or the bus and in the best case the car would not slip 
from the straight direction. BBW4 minimizes the 
influence of faults by a brake force distribution 
mechanism. The use of this mechanism is enabled by 
the TTP/C cluster services — membership service, node 
replication, channel (and frame) replication and time 
synchronization. 

A fault injection experiment can be organized in several 
ways: 

• White-box FI — the faults are targeted into exact 
locations and/or injected at exact points in time. 
Such experiments are used often to verify a 
particular hypothesis (e.g. clock synchronization). 

• Black-box FI — the faults are injected at random 
intervals and hit random targets in the modeled 
system. This experiment organization is suitable to 
prove general resistance to FI. A fault model that is 
close to reality is essential. 

In our case a variant of black-box FI has been applied 
primarily — pseudo-random stochastic FI.  

Stochastic Fault Injection. 

This method utilizes streams of faults (mostly Gaussian 
or Poisson streams) that are controlled by a pseudo-
random number generator. Our basic fault model is a 
short burst of single-bit flips (sequence of several bit-
sized faults) that is repeated within a stream with mean 
period larger than the duration of a single burst. This 
fault model simulates reoccurring transient problems of 
the chosen node (e.g. EMI effects) or transient 
malfunction of node’s sensors, depending on the target 
of FI.  

Selected results 

A simple fault injection experiment was chosen for 
demonstration. It was stated that the brake force 
distribution mechanism should be able to minimize 
unwanted effects of a brake failure. To work properly 
the mechanism requires an accurate and up-to-date fault 
vector. Braking force to be applied to individual wheels 
is determined for the current communication period 
using fault vector from previous period. This means that 
when the fault vector changes frequently the force 
distribution mechanism’s performance can degrade 
significantly and the braking distance may be longer 
than when a permanent brake failure occurs. This 
theory can be easily verified by the model when we run 
experiments with different frequencies of faults. Very 
high frequency of faults can be used to simulate a 



  
 

   

permanent failure (the period must be shorter than the 
fastest node recovery time, which is 1 TDMA round). 

Table 2 bellow summarizes the output received from 
braking trajectory measurement for different fault 
injection frequencies (the fault is simultaneous 
shutdown of both replicas at the rear left wheel). 
Observations of the car behavior in the presence of 
faults have revealed that the distribution mechanism 
over-compensates the failed brake in time, so the 
vehicle starts drifting in the opposite direction (then the 
effect is reversed, so the car moves from left to right and 
back). This makes measurement of current Y-Axis 
position almost useless, so the table below lists only the 
maximum deviation in the Y-axis (max. lateral 
movement). 

The intensity of fault injection is given as a ratio of 
fault-injected TDMA rounds to total number of TDMA 
rounds. For example “1:10” ratio means 1 fault in 10 
TDMA rounds. The special value “0:–” means that no 
FI was performed and the ratio 1:1 means that a fault is 
injected in every TDMA round (this is a simple model 
of permanent failure). 

FI Ratio 
[faulty : total] 

Traveled 
distance [m] 

Max. lateral 
movement [m] 

0 : – 56.67 0.00 

1 : 10 60.53 0.41 

1 : 5 75.57 0.38 

1 : 3 79.65 0.38 

1 : 2 128.64 2.45 

1 : 1 89.73 1.29 

Table 2: Braking results for different FI frequencies 

The first row in table 2 contains measurement of the 
braking process under optimal conditions, i.e. no fault 
injection was applied. This provides us with reference 
values, so we can compare the values retrieved with 
different fault injection settings. The lower rows in the 
table gradually increase fault intensity and we can see 
that the measured travelled distance and lateral 
movement increase accordingly — except for the FI 
ratio “1:2”. In this case the overall braking distance and 
maximum lateral deviation is significantly larger than 
for other FI ratios (even for higher fault frequencies). 
This behaviour is caused by the brake-force distribution 
mechanism that shows a possibly dangerous instability 
to certain fault frequencies (the algorithm assumes that 
current state will be valid for the next communication 
period and this FI frequency invalidates the 
assumption). This confirms the previously stated 
hypothesis (in italics at the beginning of this section) 
and gives us a rough worst-case braking scenario. 

A snapshot of the BBW4 application used to gather the 
presented results (its visualization) is displayed in figure 

3. The application can be easily altered to inject 
different kind of faults, e.g. to inject into different 
combination of nodes or to inject only during certain 
protocol execution phase. 

ADVANTAGES AND POSSIBLE DEPLOYMENT  
The method of simulation-based verification of safety 
critical systems is not new and many sources deal with 
simulation modeling at different architectural levels. 
What makes our method unique is its wide usability: 

• Functional reference model: the C-language model 
of the system’s interconnection protocol can be 
used from the early stages of development as an 
exact definition of the protocol (e.g. more exact 
than a written semi-formal specification). Parts of 
the code can be verified separately. This enables to 
perform various experiments in early stages of new 
protocol version preparation. In later stages the 
exact C-model serves as reference for any HW 
based implementation. 

• Executable model: The functional protocol 
reference model can be embedded within a 
simulation environment (in our case the C-Sim 
library) to provide the basis for building executable 
models of the whole system including applications. 
An application can be developed and debugged 
relatively easily using the model even when the 
modeled device is not yet available. Using a wide 
set of simulation applications (specially designed 
for testing, i.e. not necessary real-world 
applications), it is possible to generalize the 
obtained results. We can easily implement different 
fault tolerant mechanisms (active replication, TMR, 
repeated execution, etc.) and evaluate the 
effectiveness of these different approaches. 

• Real-world applications: The ANSI standard of C 
language, which is used, enables to link the model 
with any C-written application. This is important 
because today, most industrial applications (for 
embedded computers) are written in C language. 
There are two possible ways to utilize this: We can 
take an existing application and verify it under 
arbitrarily severe conditions (unlikely to happen in 
the normal operating environment). The second 
utilization is to develop a completely new 
application using the model and after thorough 
verification and debugging port this application into 
the real device. This porting requires usually only 
minor modifications to the source code. The 
simplicity of the porting process (resulting from the 
same used programming language) reduces the 
probability that a fault in the application will be 
introduced during the transformation. 

• Portability and performance: The simulation can 
run on any system that provides a C language 
compiler (this means almost every computer 



  
 

   

system). The experiments were done on several 
platforms, including: PC with Linux, Windows NT 
and Windows XP, supercomputer Digital 
AlphaServer 8400 5/300 with Digital UNIX V4.0E. 
The performance of the model is determined mainly 
by the applications design (i.e. number of nodes, 
computation complexity). For example, on the a 
1.4GHz PC the synthetic application sine wave 
(4 nodes) executes approximately four times faster 
than real-time and the real-world application 
BBW4 with 10 nodes executes at half speed of real-
time. 

• Analyzability of results: Because C-Sim based 
simulation is fully deterministic, we are able to 
analyze discovered problems at arbitrary level of 
detail. This enables to pinpoint to source of a 
problem exactly, i.e. to find whether the problem is 
caused by a faulty implementation or by a flaw in 
the system design. 

• Abstraction level — Limits possible fault injection 
targets. In our case we are able to perform FI into 
any memory field of TTP/C that is defined in the 
official specification, into transmitted messages and 
into any application defined field. It is impossible 
to influence internal registers (not covered by the 
specification) and code. 

• Fault Nature — only memory based faults are 
possible, moreover permanent faults are difficult to 
simulate. 

• Set-up difficulty — depends on the application and 
availability of a ready-to-use solution (as the 
BBW4 made by Volvo). To build a model from 
scratch is very time-consuming. 

• Reusability — different for all parts of the model. 
The C-Sim tool is highly reusable and the TTP/C C 
reference model can be without any difficulty used 
for any other application. The real-world 
application is bound to a particular purpose and 
cannot be used anywhere else except the real 
device. 

CONCLUSIONS 

The presented case study (the BBW4 application) shows 
many of the benefits that a simulation can offer. The 
most obvious one is that a HW implementation would 
not even be possible in advance. Moreover, the 
simulation tool enables us to add a visual user interface 
to the model as well as a fault injection capability. Such 
an interface can be used either for more sophisticated 
experiments or for demonstration purposes, as it 
interactively displays the current state of simulation. 

It is obvious that evaluation and verification based on 
simulation can never provide complete assurance of the 
safety of the modeled system or application. In reality 
this cannot be guaranteed by any single verification 
method. The advantages of our approach are clearly 
stated in section Advantages and Possible Deployment. 

Usefulness of the described approach and mainly the 
mentioned case-study (BBW4) was proven within the 
EU FIT project (Final report of the FIT project 2002).  

Figure 3: Captured screen from the visualized BBW4 application 



  
 

   

The model of a newer version of the TTP/C protocol 
(the C2 chip) is currently developed and in the future we 
plan to adapt the testing tools to this new model. Also 
the current BBW4 application should be extended to 
allow a wider range of experiments. 
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