

A DECOUPLED FEDERATE ARCHITECTURE FOR DISTRIBUTED
SIMULATION CLONING

Dan CHEN1, Stephen John TURNER2, Boon Ping GAN1, Wentong CAI2, Junhu WEI2

1 Singapore Institute of Manufacturing Technology
Singapore 638075

E-mail: {dchen, bpgan}@simtech.a-star.edu.sg

2 School of Computer Engineering
Nanyang Technological University

Singapore 639798
E-mail: {assjturner, aswtcai, asjhwei}@ntu.edu.sg

KEYWORDS

High Level Architecture, Runtime Infrastructure,
distributed simulation cloning, decoupled federate
architecture, fault tolerance.

ABSTRACT

Distributed simulation cloning technology is designed to
perform “what-if” analysis of existing High Level
Architecture (HLA) based distributed simulations. The
technology aims to enable the examination of alternative
scenarios concurrently within the same simulation
execution session. State saving and recovery are necessary
for cloning a federate at runtime. However it is very
difficult to have a generic state manipulation mechanism
for any existing federate, as these can be developed
independently and freely. The correctness of replicating a
running federate significantly depends on the Runtime
Infrastructure (RTI) software. The distributed simulation
also needs fault tolerance to provide robustness at
runtime. This paper proposes a decoupled federate
architecture to address the above issues. A normal
federate is decoupled into two processes, which execute
the simulation model (virtual federate) and the local RTI
component (physical federate) respectively. The
decoupled approach interlinks the two processes together
via Inter-Process Communication. The virtual federate
interacts with the RTI through the standard RTI service
interface supported by a customized library. The
decoupled architecture ensures the correct replication of
federates and facilitates fault tolerance at the RTI level. At
the same time, it provides user transparency and
reusability to existing federate codes. Benchmark
experiments have been performed to study the extra
overhead incurred by the decoupled federate architecture
against the normal federate. The encouraging
experimental results indicate that the proposed approach
has a performance close to the normal one in terms of
latency and time synchronization.

1. INTRODUCTION

Distributed simulation is an important technology that
facilitates simulation programs executing in a distributed
environment. Geographically distributed simulation
models can be linked together to construct a large-scale
simulation federation. Distributed simulation technology
has a variety of applications, one of which is supply-chain
simulation. It meets the pressing need of simulating a
supply-chain, as this often involves multiple companies
across enterprise boundaries and simulation models that
are developed independently (Gan et al. 2000; Turner et
al. 2001).

The High Level Architecture (HLA) defines the rules
and specifications to support reusability and
interoperability amongst the simulation federates. The
Runtime Infrastructure (RTI) software supports and
synchronizes the interactions amongst different federates
conforming to the standard HLA specifications (Dahmann
et al. 1998). HLA-based distributed simulation provides
interoperability and reusability of the independent
simulation federates. However in the context of a
traditional distributed simulation, one simulation session
can only yield one single set of results for analysis. To
perform “what-if” analysis, one has to repeat the
execution of the simulation to examine alternative
scenarios or decision strategies using different rules and
parameters. Therefore the simulation analyst may choose
some best solutions based on all the possible results.
Basically it is a time-consuming and onerous task in
which a lot of computation is repeated unnecessarily.

During the simulation, a federate will meet some
points (decision points) at which there occurs a critical
change of system states, and it is faced with different
choices to proceed (Chen et al. 2003a). Instead of
executing all the choices one by one in a linear way, the
simulation cloning approach offers users the flexibility to
examine these different choices concurrently. At a

predefined decision point, cloning of a federate may be
triggered at runtime, following which the federate can
replicate itself into multiple clones to explore different
possibilities (Chen et al. 2003a). Each clone explores one
particular path together with its partner clones spawned
from the other federates in the original scenario. Thus,
users are able to analyze multiple alternative results
concurrently using the same simulation models within a
single simulation run.

However it is challenging work to ensure correct and
efficient simulation cloning especially in the context of
distributed simulation. For example, it needs state saving
and recovery at both the simulation model level and the
RTI level, rather than simply starting another federate
instance. A distributed control mechanism is needed to
coordinate the federates within the same distributed
simulation session. Furthermore, the correctness of
cloning significantly depends on the platform and RTI
software the simulation federates use. As the local RTI
component is not designed to be replicated, direct cloning
of a federate can lead to unpredictable and uncontrollable
failure at the RTI level. Thus it requires us to design a
reliable and correct federate cloning approach.

One of the key benefits of HLA-based simulation is
reusability (Dahmann et al. 1998), which raises another
critical issue of reusing the existing code of user federates
while adopting simulation cloning technology.
Considering the complexity and variety of simulation
models, it is difficult to have a generic cloning solution
that keeps the consistency of any simulation federate
while cloning. However a middleware approach makes it
possible to monitor the system state of a federate at the
RTI level (Chen et al. 2003a).

Moreover simulation federates running at different
locations are liable to failure, and the failure of one
federate can lead to the crash of the overall distributed
simulation. Cloning more and more federates inside one
single federation may increase the risk of such failure
steadily, thus we need to investigate the fault tolerance
issue in simulation cloning and apply it to the distributed
simulation technology.

This paper introduces the idea of decoupling the local
RTI component from a normal HLA federate. Basically a
normal federate contains the simulation model and the
local RTI component. The proposed approach separates
these two modules into two independent processes,
namely a virtual federate and a physical federate. The
virtual federate inherits the code of the original simulation
federate while associating a “virtual” RTI component with
it, which still provides the simulation model with a
standard interface of RTI services. The real RTI services

are accessed through the physical federate working in the
background. An Inter-Process Communication channel
bridges the two processes together into a simulator in a
general sense. All the RTI calls employed by a virtual
federate call services via the corresponding physical
federate. This approach ensures the intactness of existing
simulation federates. Cloning a federate means replicating
multiple virtual federates and starting new physical
federates with recovered system states at runtime. As the
virtual federate contains no real RTI component, the
decoupled approach avoids the risks incurred by copying a
running federate.

The decoupled architecture isolates the failure of local
RTI components from the simulation federates. In the case
of an RTI component crash, a new federate or even a new
federation can be resumed according to the stored states at
the RTI level. One does not need to start the whole
simulation from scratch, thus the decoupled approach
provides fault tolerance in this sense. All these advantages
can be achieved without interrupting the execution of the
user’s simulation.

To investigate the overhead incurred by the decoupled
approach, this paper presents a set of benchmark
experiments on latency and synchronization performance.
Results are reported and compared between the decoupled
federates and normal federates. The experimental results
indicate a promising performance of the decoupled
federates in both benchmarks.

The rest of this paper is organized as follows: Section
2 outlines the distributed simulation cloning technology
and related work. Section 3 discusses the decoupled
approach in detail for both design and implementation.
Section 4 describes the benchmark experiments and
analyzes the results. In section 5, we conclude with a
summary and proposals on future works.

2. DISTRIBUTED SIMULATION CLONING
TECHNOLOGY

2.1 Related Work

Hybinette and Fujimoto first employed the simulation
cloning technology as a concurrent evaluation mechanism,
in the context of parallel simulation (Hybinette and
Fujimoto 2001). The motivation for this technique was to
develop a parallel model that supports an efficient, simple,
and effective way to evaluate and compare alternative
scenarios. The method was targeted for parallel discrete
event simulators that provided the simulation application
developer with a logical process (LP) execution model.

Schulze et al introduced a cloning approach to extend
the flexibility of system composition to run-time (Schulze

et al. 2000). Their approach included the parallel
management of different time axes in order to provide
forecast functionality. Internal cloning and external
cloning techniques were suggested to clone the federates
at run-time.

As our design targets the users who may have their
own existing complex simulation models, we have the
additional aim to provide reusability and transparency
while enabling simulation cloning. Our research and
discussion are based on HLA-compliant distributed
simulations. Providing easy utilization and deployment is
another major concern. Distributed simulation cloning
technology should be a much more powerful and flexible
decision support tool than traditional “linear” simulation.
Our approaches focus on the control of a large-scale
distributed simulation using the cloning technology.

2.2 Distributed Simulation Cloning

Simulation cloning technology involves research issues
such as trigger conditions, cloning operation, distributed
coordination, state saving and recovery, scenario
management and interactive control, etc. We define some
terms in distributed simulation cloning as follows.

Cloning of a distributed simulation may happen at
some critical points that are defined by a simulation
analyst. At one of those points, a federate may face
different choices that perform alternative actions. These
points are known as decision points, which comprise
trigger conditions and candidate actions for a federate to
perform. A decision point usually represents the location
in the execution path where the states of the system start
to diverge in a cloning-enabled simulation. From the
decision point onwards, a federate may spawn multiple
executions to exploit alternative scenarios concurrently.

A federate is said to perform active cloning if it makes
clones on its own initiative. As there exist multiple
interoperating federates in distributed simulations, when
one federate splits into different executions, the partners
who interact with this federate may have to spawn clones
as a result of the active cloning, thus passive cloning
happens. The clones created from the same root federate
are referred to as sibling clones. Each clone is an
independent simulation federate, and it cooperates with
some clones of other federates to form an independent
simulation scenario. Those clones within the same
scenario are known as partners.

In order to save computation, our proposed approach
merely requires cloning the federates whose states will
change at a decision point and keeping other federates
intact. Thus the simulation is replicated incrementally;

such an incremental cloning approach shares
computation between federates in multiple scenarios.
Although new scenarios have been created due to the
active cloning, a clone is capable of executing in multiple
scenarios, and these are known as shared clones.

When a federate is cloned, we can create multiple
federations to meet the demand of executing alternative
scenarios or generate new federates within the original
federation without intervening in the execution of any
other scenario. The former approach is called a Multiple-
federation Solution, and the latter approach a Single-
federation Solution. A single-federation solution offers
advantages in cloning control and cloning sharing and is
adopted for our research. In order to manage concurrent
scenarios within a single federation, we propose to use the
Data Distribution Management (DDM) (Morse and Petty
2001) mechanism to partition scenarios. To provide
reusability to existing simulation federates, a middleware
approach is adopted to hide the implementation of any
cloning related modules. Thus transparency to simulation
federates is achieved in distributed simulation cloning.

3. CLONING FEDERATES

3.1 Problems in Cloning Federates

Simulation Model

RTI component

RTI interface

Simulation Federate

Runtime Infrastructure

Figure 1: Abstract Model of a Simulation Federate

A normal simulation federate can be viewed as an
integrated program consisting of a simulation model and
local RTI component, as shown in Figure 1. As mentioned
above, active cloning of a federate occurs at a decision
point to enable different candidate actions to be
performed. “Cloning” implies that the new clones of one
particular federate should have the same features and
states as the original federate both at the RTI level and at
the simulation model level. This is to ensure the
simulation state consistency. For example, at the RTI
level, clones must have subscribed to the same object
classes and registered the same object instances etc. At the
simulation model level, the clones should have the same
program structure, data structures, objects and variables;
all these program entities should have identical states.

Immediately after the active cloning, the clones will be
given some particular parameters or routines to execute in
different paths.

One possible solution is to introduce a state saving and
recovery mechanism to the simulation federates, allowing
the simulation federate to store snapshots of all the system
states. When cloning occurs, new federate instances are
started and initialized with stored states. However, users
model their simulations in a totally free manner. It is
unlikely that a generic state saving and recovery
mechanism can be provided that will be suitable for any
simulation federate. Even given such a mechanism, it is
unlikely that all simulation developers will use the same
standard package to model their simulations. Without the
ability to customize the user’s simulation code, it is almost
impossible to make snapshots of all system states of any
federate. Furthermore, the principle of reusing existing
federate code increases the difficulty of this task. On the
other hand, the standard HLA specification makes it
relatively easy to intercept the system states at the RTI
level. Using a middleware approach, one may save and
recover the RTI states while enabling transparency.

However some operating systems enable the user to
duplicate a running process. In UNIX, some system calls
such as fork can create a new process that is an exact
copy of the calling process (Stevens 1999). This suggests
the possibility of cloning a federate at runtime using such
a process duplication mechanism. Thus the correctness of
cloning depends on the platform and RTI software that the
simulation federates adopt. However, the local RTI
component is not designed to be duplicated, thus forking a
federate can lead to unpredictable and uncontrollable
failure at the RTI level. The failure of the local RTI
component prevents the simulation execution from
proceeding correctly.

In HLA-based distributed simulation, the crash of one
federate can result in the failure of the overall simulation
federation. As more and more clones will participate in
the existing federation as a result of simulation cloning,
fault tolerance becomes another important concern. From
the above discussion, we can see that the simulation
model and the local RTI component have very different
characteristics. Therefore, it seems that we can make a
distinction between these two modules for cloning a
federate.

3.2 Decoupled Federate Architecture

To tackle the problems involved in replicating running
federates, this section introduces the decoupled federate
architecture to separate the simulation model from the

local RTI component. The design and implementation of
this approach will be covered in detail.

3.2.1 Virtual Federate and Physical Federate
In the context of the decoupled architecture, a federate’s
simulation model is decoupled from the local RTI
component. A virtual federate is built up with the same
code as the original federate. As HLA only defines the
standard interface of RTI services, we are able to
substitute the original RTI software with our customized
RTI++ library without altering the semantics of RTI
services (Chen et al. 2003a). Figure 2(B) gives the
abstract model of the virtual federate. Compared with the
original federate model illustrated in Figure 1, the only
difference is in the module below the RTI interface, which
remains transparent to the simulation user.

Physical Federate

newRTIAmb

fedAmb

Messaging Protocol

Messaging Protocol

phyFedAmb

Callback
Processor

IPC

RTIAmb

Real Runtime Infrastructure

Simulation Model

Simulation Model

Customized RTI++
Library

RTI interface

Communication Channel

(A) (B)

Middleware

Virtual Federate

IPC channel for
RTI services

IPC channel for
callback

Virtual Federate

Figure 2: Decoupled Federate

A physical federate is specially designed as shown in
Figure 2(A). The physical federate associates itself with a
real local RTI component. Physical federates interact with
each other via a common RTI. Both virtual federates and
physical federates operate as independent processes.
Reliable Inter-Process Communication (IPC) or other out-
of-band communication mechanism bridges the two
entities into a simulator in a general sense (Stevens 1998).
Using the decoupled approach, cloning of a simulation
federate can be done by forking the virtual federate
process and starting an additional physical federate
instance with restored system state at the RTI level.

 All the components inside the dashed rectangle form a
Middleware module between the simulation model and
the IPC. Within the virtual federate, the newRTIAmb
contains customized libraries while presenting the
standard RTI services and related helpers to the simulation
model. This module is also designed to contain all other
management modules for cloning purpose (Chen et al.

03b). The fedAmb serves as a common callback to the
user federate, which is freely designed by the user and
independent of the decoupled approach. The
newRTIAmb handles the user’s RTI service calls by
converting the method together with the associated
parameters into IPC messages via the Messaging
Protocol. The protocol defines a mapping between an IPC
message type and the RTI method it represents. For
example, an RTI_UPDATE message indicates that the
virtual federate has invoked the RTI method
updateAttributeValues(). The IPC conveys these messages
to the physical federate for processing in a FIFO manner
immediately.

The physical federate is designed to convert an RTI
call message generated from the virtual federate into the
corresponding RTI call through its own messaging
protocol layer. The RTIAmb module executes any RTI
service initiated by the simulation model prior to passing
the returned value to the IPC. The phyFedAmb serves as
the callback module of the physical federate to respond to
the invocation issued by the real RTI. Within the
phyFedAmb module, the messaging protocol is employed
to pack any callback method with its parameters into IPC
messages. The IPC enqueues the callback message to the
Callback Processor module at the virtual federate.
Through the messaging protocol, the callback processor
activates the corresponding fedAmb method implemented
by the user. From the simulation users’ perspective, a
combination of one virtual federate and its corresponding
physical federate operates as a simulation federate in the
context of the decoupled architecture. The federate
combination performs an identical execution to the normal
simulation federate using the same code in the virtual
federate. In future discussion, we will explicitly use
“normal federate” to refer to a traditional federate that
directly interacts with the RTI. By default, in the
discussion of this paper a clone or a federate contains a
virtual federate process and a physical federate process.

3.2.2 Inside the Decoupled Architecture
As discussed above, the decoupled approach interlinks a
virtual federate and the physical federate into a simulator
that performs an identical simulation to the corresponding
normal federate. This section gives the details of how an
RTI service call is executed and the callback is invoked in
the decoupled federate architecture.

Figure 3 depicts the procedure where a simulation
model initiates an RTI call and waits for a return from the
real RTI, using the updateAttributeValues method as an
example. The procedure is as follows:

• The virtual federate invokes the redefined
updateAttributeValues method.

• Inside the updateAttributeValues method, the
packMsg routine extracts the data stored in the
AttributeHandleValuePairSet (AHVPS) and packs
them together with other parameters such as the
associated timestamp, object instance handle and tag
into an RTI_UPDATE message.

• The IPC enqueues the RTI_UPDATE message to the
physical federate. The virtual federate switches to
waiting mode for the returned message.

• Once the physical federate receives the IPC message,
it invokes the unpackMsg routine to process it
according to the associated type, RTI_UPDATE.

• A new AHVPS object and related parameters are
recovered based on the IPC message and passed to
the RTI::updateAttributeValues, which invokes the
real RTI service.

• On the accomplishment of this
RTI::updateAttributeValues call, the physical federate
acknowledges the virtual federate with an IPC
message containing the returned value.

• The updateAttributeValues call finishes and the data
retrieved from the acknowledgement message is
returned to the simulation model.

Invoke
newRTI::updateAttr

ibuteValues()

packMsg(RTI_UP
DATE)

initia
te

unpackMsg()

Execute
RTI::updateAttribut

eValues()

translate via
protocol

Block waiting

Block waiting

Virtual Federate Physical Federate

return

Finish
newRTI::updateAttr

ibuteValues()

Return to caller

Figure 3: Executing an RTI Call in the Decoupled
Architecture

From the user’s point of view, the initiation and
accomplishment of an RTI call are identical to the original
normal federate. The semantics of RTI services are kept
intact in the decoupled approach.

The RTI software has an interface that provides
flexible methods to the user for packing update data and
leaves the transmission details transparent. The user can

create update data of variable lengths. However most IPC
mechanisms have limitations in message size and buffer
size. For example, the Message Queue based on Solaris
defines the maximum queue length as 4096 bytes (Stevens
1998). The message sender and receiver must agree with
each other on the same message length. If a fixed message
size is defined for IPC messaging, it may incur some
unnecessary overhead. A fixed large size is inefficient in
transmitting small messages. On the other hand, a fixed
small size increases the overhead for packing, delivering
and unpacking a large number of small packets in the case
of processing large messages. Thus a protocol is proposed
for messaging between the virtual federate and physical
federate. We define a small message size (MSG_DEF)
and a large message size (MSG_LG) for assembling user
data into packets. A special “PREDEFINE” packet is used
to notify the receiver if large or multiple packets are to be
sent for a single data block. Figure 4 gives the messaging
details based on this simple protocol.

Invoke
packMsg()

Processor

Block waiting for
MSG_DEF
message

Sender Receiver

Is large data?

Small Packet
Assembler

N

Is "predefined"
packet?Y

Large Packet
Assembler

Send

Produce
PREDEFINE

message 1
IPC Send

Slice and
assemble user

data into multiple
packets

2

Return
to caller

Small Packet
Disassembler

N

Y
Retrieve type and

length of next
packets

Large Packet
Disassembler

Return
to caller

Block waiting for
MSG_LG message

Produce Integrated
Data Block

Y

All packets
received?

N

Figure 4: Messaging between Virtual Federate and
Physical Federate

The RTI communicates with a federate via its federate
ambassador provided by the user (DMSO 2002). A
federate must explicitly pass control to the RTI by
invoking the tick() method. For example, the RTI delivers
the Timestamp Order (TSO) events and Time Advance
Granted (TAG) to a time-constrained federate in strict
order of simulation time, which coordinates event
interchange among time regulating and time constrained
federates in a correct and causal manner. Therefore, the
decoupled architecture should guarantee that (1) the
federate ambassador at the user federate works in a
callback like manner and (2) callback methods are
invoked in the correct order. Figure 5 depicts how to
realize these functionalities. To ease discussion, we

assume the physical federate will get the callbacks shown
in Figure 5. This procedure is illustrated by the following
steps:
• The Virtual federate invokes the routine

newRTI::tick() and the latter sends out an RTI_TICK
message to the physical federate.

• The Physical federate calls the real RTI tick()
according to the RTI_TICK message.

• The local RTI component acquires control and
delivers events to the phyfedAmb module of the
physical federate in a strict order.

• In each callback method invoked, the data sent by the
RTI is enqueued to the callback IPC channel. The
routine inside the newRTI::tick()accesses the queue
for the virtual federate.

• As long as the RTI_TICK_DONE message is not
detected, the callback processor continuously
processes the messages in a FIFO order while
activating the corresponding method in the fedAmb
module based on the messaging protocol.

• At the physical federate side, once the RTI finishes its
current work and passes control to the physical
federate, the latter returns an RTI_TICK_DONE
message to the virtual federate.

• On receiving the RTI_TICK_DONE message, the
virtual federate accomplishes the newRTI::tick(), and
control is returned to the caller immediately.

The real RTI starts to take charge only when the
physical federate explicitly invokes RTI::tick(). On the
other hand, the newRTI::tick() can only return when the
real RTI finishes its work. The communication channels
linking the virtual federate and physical federate work in a
FIFO manner. Thus the order of each callback method
invoked at the physical federate is identical to the
sequence in which the callback processor at the virtual
federate processes the data. From the user’s perspective,
the callback mechanism based on the decoupled approach
executes the equivalent operations to the normal federate.
It guarantees consistency in presenting interactions from
the real RTI to the simulation model and also ensures user
transparency.

The decoupled architecture requires an additional IPC
communication layer although it performs exactly the
same computation as the corresponding normal federate.
The external communication may incur some extra
overhead. To investigate the overhead incurred by the
decoupled approach, a series of benchmark experiments
has been performed to compare with the normal federates.
Section 4 reports and analyzes the experimental results in
terms of event transmission latency and synchronization
efficiency.

Invoke

Invoke
newRTI::tick()

Initiate

Invoke
RTI::tick()

IPC send

Block waiting

1. RTI_DISCOVER

Block waiting

Virtual Federate Physical Federate

Callback
Processor

N

phyFedAmb

Callback sequence
starts

Pass control
to RTI

::discoverObjectIns
tance(65356)

::reflectArributeVal
ues(14.9)

::timeAdvanceGran
ted(15.0)

2. RTI_REFLECT

3. RTI_TAG

Send

Callback sequence
finishesFinish

RTI::tick()

Return control

to caller

RTI tick done?

fedAmb

::discoverObject
Instance(65356)

::timeAdvanceG
ranted(15.0)

::reflectArribute
sUpdate(14.9)

1. RTI_DISCOVER 2. RTI_REFLECT 3. RTI_TAG

Finish
newRTI::tick()

Y

R
T

I_T
IC

K
_D

O
N

E

Figure 5: Conveying Callbacks to the Virtual Federate

3.2.3 Fault Tolerance
In an HLA-based distributed simulation, the participating
federates running at different locations are liable to
failure. A lot of factors may contribute to the failure of a
federate, for example, network congestion, platform crash
of the RTIEXEC process (DMSO 2002) etc. It is also
difficult to handle such failure during runtime because
most RTI implementations operate as a black box. In a
large-scale distributed simulation, the crash of one
federate can lead to failure of the overall simulation. More
and more federates will participate in the same federation
with the cloning of federates, which increases the
possibility of simulation failure. Although users model the
simulation federate properly, an RTI failure still induces
simulation collapse. Simply restarting a new federate to
substitute the crashed one is not applicable since the
consistency of the overall simulation state is lost.
Considering the complexity and distribution of the
individual simulation models and the number of federates
in a large-scale distributed simulation, it is costly to restart
the overall distributed simulation. As fault tolerance
(Danami and Garg 1998) is needed in a distributed
simulation, we propose using the decoupled approach to
address the potentially unpredictable faults at the RTI
level. In this study, the fault tolerance aims to minimize
the wasted distributed computation and to provide user
transparency. In other words, the user does not have to
intervene into the running simulation to deal with RTI
failure.

The middleware approach enables the interception of
RTI services invoked by the simulation model. The

system state at the RTI level is accessible using the
middleware approach (Chen et al. 2003a). Thus we can
retrieve the “features” of a federate, such as the object
classes subscribed and published as well as whether the
federate is time constrained or time regulating.
Furthermore we can log the “operation” history of a
federate. The middleware can track the object instances
registered and each attribute update to any object instance.
All these operations are hidden beneath the newRTIamb
interface. Based on the stored information, a crashed
federate can be replaced by a new federate with inherited
system states from the system state log. By “plugging” the
new federate back to its virtual federate, the distributed
simulation can continue without being interrupted by the
previous RTI failure. The approach can also take
advantage of the federation save and restoration
mechanism provided by RTI services. This mechanism is
indicated as in Figure 6. The same model of state saving
and recovery used in cloning federates can also provide
this fault tolerance.

Figure 6 gives a model of how fault tolerance can be
achieved with the decoupled architecture, in which one of
the running federates (marked as m) is highlighted for
study. As illustrated in Figure 6(A), at runtime the
middleware intercepts the invocation of each RTI service
method. The interceptor logs all the RTI system states into
stable storage. Some RTI states are relatively static, such
as the federate identity, federation information, the
aforementioned declaration data and time features. The
static states also include the registered or deleted objected
instances. Some other RTI states are highly dynamic, such

as granted federate time, sent and received interactions,
updated and reflected attribute values of object instances,
etc.

Real Runtime Infrastructure

Virtual Federate m

Middleware

Stable Storage

RTI Interface
Federate and Federation Information

RTI States
Interceptor

Physical Federate
m

Declaration Data

Time Feature

Events

Crashed RTI

Virtual Federate m

Middleware

......

Stable Storage

RTI Interface

Physical Federate
m

New Real RTI

New Physical
Federate m'

......

Recover RTI
System State

(A)

(B)

Manangement
Module

Figure 6: Fault Tolerance using Decoupled Federate

As soon as the middleware detects the RTI failure, no
matter whether it is due to a local physical federate or
incurred by other federates or for some other
unpredictable reasons, the management module within the
virtual federate will cut off the connection from its
physical federate and terminate it (as shown in the left
side of Figure 6(B)). Subsequently the management
module will initiate a new physical federate instance m’
and have it join the existing federation or possibly a new
federation with another RTIEXEC process. When the
whole federation fails, other virtual federates can also
perform the same action and form a new workable
federation together in the same way. After that, the
physical federate reads in the RTI state from the stable
storage. It invokes the corresponding RTI services with
restored parameters to recover the features of the old
federate and resumes the dynamic system states in the
snapshot obtained from the stable storage. Finally the
virtual federate continues execution with the new physical
federate. Thus, the physical federate works as a plug-and-
play component, it can be replaced and transplanted at
runtime.

4. BENCHMARK EXPERIMENTS AND RESULTS

In order to investigate the overhead incurred in the
decoupled architecture, we perform a series of benchmark
experiments to compare the decoupled federate with a
normal federate. The performance is compared in terms of
latency and time advancement calculation. Latency is

reported as the one-way event transmission time between
one pair of federates. The time advancement performance
is represented as the time advance grant rate.

4.1 Experiment Design

The experiments use three computers in total (two
workstations and one server), in which the server executes
the RTIEXEC and FEDEX processes. The federates that
run at one independent workstation are enclosed in a
dashed rectangle. In our case fed A[i] and fed B[i] (0≥i)
occupy workstation 1 and workstation 2 respectively. The
computers are interlinked via a 100Mbps-based backbone.

FED A[1]

FED A[2]

FED A[3]

FED A[4]

FED A[5]

RTI

1 FED 1[B]1

2 FED 2[B]2

3 FED 3[B]3

4 FED 4[B]4

5 FED 5[B]5

Workstation 1 Server Workstation 2

FED B[1]

FED B[2]

FED B[3]

FED B[4]

FED B[5]

Figure 7: Architecture of Benchmark Experiments

The server (Ultra-Enterprise) has following
specification:

• sparcv9 processor (* 6) operating at 248 MHz
• 2048 Mbytes of RAM
• Sun Solaris OS 5.8
• GCC 2.95.3
• DMSO RTI NG 1.3 V6 for the SunOS-5.8

operating system and the gcc-2.95.3 compiler

The workstations (SunBlade 1000) have the following
specification:

• sparcv9 processor operating at 900 MHz
• 1024 Mbytes of RAM
• Sun Solaris OS 5.8
• GCC 2.95.3
• DMSO RTI NG 1.3 V6 for the SunOS-5.8

operating system and the gcc-2.95.3 compiler

The experiments emulate the simulation cloning
process by increasing the number of identical federates.
As shown in Figure 7, fed A[1] and B[1] form a pair of
initial federate partners, which represent the federates to
be cloned. Fed A[i] and B[i](i>1) stand for the ith clones
of the two original federates respectively. The architecture

is used through all the benchmarks experiments and for
both normal federates and decoupled federates.

A DDM based approach is used to partition concurrent
scenarios (Chen et al. 2003b). For the latency benchmark,
each pair of federates have an exclusive point region
associated to any event being exchanged. The federates
are neither time regulating nor time constrained. In one
run, each federate updates an attribute instance and waits
for an acknowledgement from its partner (from fed A[i] to
fed B[i], and vice versa) for 5,000 times with a payload of
100, 1000 and 10,000 bytes. The time interval in the
ping-pong procedure will be averaged and divided by 2 to
give the latency in milliseconds. A federate merely
reflects the events with identical region to itself. In other
words, fed A[i] only exchanges events with fed B[i].

As for the time advancement benchmark, all federates
are time regulated and time constrained. Each federate has
lookahead 1.0 and advances the federate time from 0.0 to
5,000.0 with timestep 1.0 using timeAdvanceRequest
(DMSO 2002). The results report the rate that the RTI
issues timeAdvanceGranted (TAGs/Second).

4.2 Latency Benchmark Results

Latency Benchmark with payload size 100 bytes (in MilliSec)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 3 4 5 6 7 8
 Number of Federate Pairs

L
at

en
cy

 (
M

ill
iS

ec
s)

Decoupled federate

Normal federate

Figure 8: Latency Benchmark on Decoupled Federate vs
Normal Federate with Payload 100 Bytes

Latency Benchmark with payload size 1000 bytes (in MilliSec)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 3 4 5 6 7 8
 Number of Federate Pairs

L
at

en
cy

 (
M

ill
iS

ec
s)

Decoupled federate

Normal federate

Figure 9: Latency Benchmark on Decoupled Federate vs
Normal Federate with Payload 1000 Bytes

Latency Benchmark with payload size 10,000 bytes (in MilliSec)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 5 6 7 8

 Number of Federate Pairs

L
at

en
cy

 (
M

ill
iS

ec
s)

Decoupled federate

Normal federate

Figure 10: Latency Benchmark on Decoupled Federate vs
Normal Federate with Payload 10,000 Bytes

The latency benchmark experiments report the latency
with three different payload sizes. From Figure 8 to Figure
10, we can see that no matter whether the payload size is
small or large, the latency increases steadily with the
number of federates. The increment becomes obvious
when the number of federates exceeds 4 pairs (8 federates
in total). As indicated in Figure 8 and Figure 9, when the
payload is not greater than 1000 bytes, the latency varies
from about 10 milliseconds for one pair of federates to
about 30 milliseconds for 7 pairs of federates. The
decoupled federate and normal federate show similar
results in this situation, and the decoupled federates incur
only slightly more latency than the normal ones. As
shown in Figure 10, when a bulky payload as large as
10,000 bytes is applied, the decoupled federates incur
about 5 milliseconds extra latency to the normal ones.
However the extra latency remains nearly constant with
the number of federate pairs. The latencies for both types
of federates increase more rapidly than the small payload
cases. This is due to the extra overhead incurred by Inter-
Process Communication, which becomes obvious with
bulky data transmission between the physical federate and
virtual federate. When the payload size and the number of
participating federates are not too large, the decoupled
federate has a similar performance to the normal federate
in terms of latency.

4.3 Time Advancement Benchmark Results

In the time advancement benchmark, the TAG rate
decreases with the number of federates for both decoupled
and normal federates. The rate decreases less rapidly
when the number of federate pairs is greater than 4 (8
federates in total). The TAG rate is about 300 times per
second for one pair of federates down to about 40 times
per second for 7 pairs of federates. The results indicate
that the performance of these two types of federates is
very similar in terms of time advancement.

Time Advancement Grant rate (times/sec)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0 1 2 3 4 5 6 7 8
 Number of Federate Pairs

T
A

G
s/

S
ec

Decoupled federate

Normal federate

Figure 11: Time Advancement Benchmark on Decoupled
Federate vs Normal Federate

5. Conclusions and Future Work

In this paper, we have investigated some issues in cloning
federates in distributed simulations. In order to overcome
the problems of replicating a federate instance and
providing fault tolerance to a distributed simulation, a
decoupled federate architecture is proposed. This
approach decouples the simulation model from the RTI
local runtime component in a normal simulation federate.
A federate is separated into a virtual federate process and
a physical federate process, where the former executes the
simulation model and the latter provides RTI services at
the backend. A standard RTI interface is presented to
support user transparency at the virtual federate, while the
original RTI component is substituted with a customized
library. The decoupled architecture enables a relatively
generic method of replicating the simulation model. It also
facilitates state saving and recovery at the RTI level for
cloning a federate and fault tolerance. The proposed
approach guarantees the correctness of executing RTI
services calls and reflecting RTI callbacks to the
simulation model.

Benchmark experiments have been performed to
investigate the overhead incurred by a decoupled federate
architecture. The experimental results are compared for a
decoupled federate and normal federate in terms of
latency and time advancement performance. The results
indicate that the decoupled architecture incurs only a
slight extra latency in the case of a bulky payload and has
a very close performance of time advancement compared
with a normal federate.

The decoupled architecture can provide other
advantages to distributed simulation technology. The
potential application avenues are as follows:

• Using a communication channel between the virtual

federate and physical federate, we are able to

distribute the computational complexity of one
federate with a heavy load in a cluster computing
environment

• Physical federates can be more independent, which
allows the further optimization of the computation.
For example, the physical federates can monitor the
federation and optimize the computation by migrating
the virtual federates to other nodes

For our future work, we need to further explore the
mechanism of the cloning operation to ensure simulation
consistency. Another challenge is the interactive
manipulation of cloning-enabled simulation in a
distributed environment, where users are offered the
flexibility to control and update the cloning online.

REFERENCES

Chen, D.; B. P. Gan; S. J. Turner; W. Cai; N. Julka; and J. Wei.
2003. “Evaluating Alternative Solutions for Cloning in
Distributed Simulation”. Proceedings of the 36th Annual
Simulation Symposium (Orlando, Florida, USA, Mar), 201-
208.

Chen, D.; B. P. Gan; S. J. Turner; W. Cai; and J. Wei. 2003.
“Data Distribution Management in Distributed Simulation
Cloning”. Proceeding of 2003 European Simulation
Interoperability Workshop, (Stockholm, Sweden, June),
paper no. 03E-SIW-024.

Dahmann, J. S.; F. Kuhl; and R. Weatherly. 1998. “Standards for
Simulation: As Simple As Possible But Not Simpler, The
High Level Architecture for Simulation”. Simulation, 71:6
(Dec), 378-387.

Danami, O. P. and V. K. Garg. 1998. “Fault-Tolerant Distributed
Simulation”. Proceedings of the 12th Workshop on Parallel
and Distributed Simulation (Banff, Albert, Canada), 38-45.

DMSO. 2002. RTI 1.3-Next Generation Programmer’s Guide
Version 5 (Feb), DoD, DMSO.

Gan, B. P.; L. Liu; S. Jain; S. J. Turner; W. Cai; and W. Hsu.
2000. “Distributed Supply Chain Simulation Across
Enterprise Boundaries”. Proceedings of the 2000 Winter
Simulation Conference (Orlando, Florida, USA), 1245-
1251.

Hybinette, M. and R. M. Fujimoto. 2001. “Cloning parallel
simulations”. ACM Transactions on Modeling and Computer
Simulation, Volume 11, (Oct), New York, USA, 378-407.

Morse, K. L. and M. D. Petty. 2001. “Data Distribution
Management Migration from DoD 1.3 to IEEE 1516”.
Proceeding of the Fifth IEEE International Workshop on
Distributed Simulation and Real-Time Applications
(Cincinnati, Ohio, USA, Aug), 58-65.

Schulze, T.; S. Straßburger; U. Klein. 2000. “HLA-federate
Reproduction Procedures In Public Transportation
Federations”. Proceedings of the 2000 Summer Computer
Simulation Conference (Vancouver, Canada, Jul).

Stevens, W. R. 1999. “UNIX Network Programming, Inter-
Process Communications”. Vol. 2, 2nd Edition, Prentice Hall.

Turner, S. J.; W. Cai; and B. P. Gan. 2001. “Adapting a Supply-
chain Simulation for HLA”. Proceeding of the Fourth IEEE
International Workshop on Distributed Simulation and Real-
Time Applications (San Francisco, California, USA), 67-74.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

