
MATCHMAKING IN THE ABELS SYSTEM
FOR LINKING DISTRIBUTED SIMULATIONS

Joshua O. Peteet, John P. Murphy, and Linda F. Wilson

Thayer School of Engineering
Dartmouth College

Hanover, NH 03755-8000 USA
Email: Firstname.Lastname@dartmouth.edu

KEYWORDS Networked resources come and go, so problems can
occur if the resources you have specified become
unavailable when you are running your simulation. It
would be helpful if your simulation could use the best
resources available and determine what those resources
are at runtime. Furthermore, it would be even better if
you could take advantage of all resources available,
rather than only those written for a particular standard.

Distributed simulation, brokering systems,
matchmaking, dynamic information exchange, software
agents, simulation tools.

ABSTRACT

Large-scale simulations often need dynamic access
to heterogeneous data resources such as sensors,
databases, or other simulations. The Agent-Based
Environment for Linking Simulations (ABELS) is
designed to facilitate the dynamic formation of a
“cloud” of independent simulations and other data
resources for the exchange of information. Participants
in the data and simulation cloud join and exit the cloud
as needed and have no prior knowledge of the other
cloud participants. The formation of the cloud is
achieved using a distributed brokering system that
matches data consumers in the cloud with appropriate
data producers, based on registration information
submitted by the various participants in the cloud. This
paper describes in detail the process used to match and
rank prospective data producers for a given data
consumer.

The Agent-Based Environment for Linking

Simulations (ABELS) system is designed to facilitate
the rapid formation of a distributed “cloud” of
autonomous data resources (Mills-Tettey et al. 2002;
Mills-Tettey and Wilson 2003a; Mills-Tettey and
Wilson 2003b; Murphy et al. 2003; Wilson et al. 2001;
Wilson et al. 2002; Wilson et al. 2003). Individual
cloud participants join and exit the data and simulation
cloud as needed and have no prior knowledge of the
other cloud participants. A distributed brokering system
is used to match data producers to consumers and
initiate communication between cloud participants, but
it does not control the independently-designed
participants in any way. Each participant in an ABELS
cloud is responsible for determining what resources it
makes available to the cloud and for describing those
resources accurately.

1. INTRODUCTION

Suppose you have a large simulation or similar
application that needs access to data from multiple
networked resources. One approach is to hardwire
those connections so that your application knows
exactly where to find the data, what formats are used,
etc. One downside of this, of course, is that you must
change your code if any of the resources change in
location or format. Another approach is to write your
application to a particular standard (e.g., HLA,
Dahmann et al. 1998), so that you can communicate
with other resources that conform to the standard.
However, you may use only those resources that
conform to the standard, and in many cases, you must
still know information about the resources that are used
by your application. Yet another approach is provided
by the web services architecture, which uses the SOAP,
WSDL, and UDDI protocols to provide interoperability
between independent services (Curbera et al. 2002). The
web services architecture, however, requires that you
know in advance which specific resources will be used.

Cloud participants may be data producers, data
consumers, or both. Each data producer is said to
provide a service, while a data consumer is said to make
requests or queries for information. A service definition
includes the name, location, and description of the
service along with detailed information about the
functions it provides. A query is defined as the ideal
function desired by the consumer. Note that a particular
query may match functions from multiple producers, so
the ABELS system must perform a detailed matching
and ranking of the candidate services and functions.

This runtime matching of data producers and

consumers is a key feature of ABELS. While a
simulation or other application must be able to specify
what resources it needs and what services it provides to
the cloud, it does not need to know any specifics about
the other participants (e.g., language, units, file formats,
etc.). This feature allows the transparent replacement of
one service provider with another that provides similar

mailto:Firstname.Lastname@dartmouth.edu

functionality, without having the services be written to
conform to a particular standard.

This paper describes in detail the matching and
ranking system used to match consumers with
producers. Section 2 provides an overview of the
ABELS system and mentions related work. Section 3
discusses the goals of the matching and ranking system,
and Section 4 describes the process of defining services
and queries. Section 5 discusses the ranking process by
which the individual service functions are evaluated in
terms of fitness to a given query. Section 6 examines
the query resolution process, while Section 7 presents
conclusions and areas of future work.

2. BACKGROUND

2.1. The ABELS System

The Agent-Based Environment for Linking
Simulations (ABELS) is a software framework that
allows independent simulations and other data resources
to exchange information with no prior knowledge of
each other. An ABELS cloud is a federation of
communicating participants, where each participant
produces and/or consumes some type of data. As shown
in Figure 1, the ABELS system architecture consists of
three basic types of components: user entities, generic
local agents (GLAs), and a distributed brokering
system. An optional user interface is provided to permit
human interaction with the system via the GLAs.

Figure 1: Basic Framework Connecting
Elements in the Cloud

A user entity is any producer or consumer of data,

and simulations often serve as both producers and
consumers. A producer is considered to be a service
that provides one or more service functions. A
consumer makes requests or queries for the information
it desires from the cloud. Figure 1 shows four user
entities: Consumer A, Producer B, Producer C, and
Producer D.

The ABELS system is designed for loosely-coupled

interactions between cloud participants. That is, user
entities are independent and are not written to a

particular standard, and consumers are not statically
linked to particular producers. Furthermore, there are no
tight interdependencies between cloud participants;
ABELS is not appropriate for participants that are
tightly-coupled to one another.

Each user entity communicates with the cloud via

its general local agent (GLA). The user entity uses its
GLA to join or exit the cloud, register its services and
service functions, and make queries for data. A data
producer is said to interface to the cloud via a producer
GLA, while a data consumer communicates via a
consumer GLA. Although a particular GLA may serve
both producers and consumers for a single organization,
it is still useful to discuss the GLA by separating its
capabilities into producer actions and consumer actions.
For example, a consumer GLA is responsible for
handling any data format, unit, and file conversions that
are necessary between the consumer and the producer
that is serving it. A producer GLA is responsible for
passing input data to a desired service, executing the
desired service function, and returning the output data to
the corresponding consumer GLA. In Figure 1, GLA A
is a consumer GLA, while GLAs B, C, and D are
producer GLAs. The GLAs are implemented in Java.

The distributed brokering system is responsible for

managing all of the cloud participants and matching
consumers with suitable data producers. Once the
brokering system establishes links between two GLAs,
the GLAs communicate directly without going again
through the broker. In Figure 1, there is a link between
GLA A and GLA B, indicating that a match has been
made between a query of Consumer A and a service
function of Producer B. Logically, the brokering system
consists of the broker, the matching and ranking system,
and the keyword and conversion databases. The broker
is implemented using Java and Sun Microsystems’ Jini
technology (Kumaran 2002), while the other
components are implemented using Java. (Additional
information on Jini can be found at
http://www.sun.com/jini).

 Distributed
brokering
 system GLA GLA

B A

The broker manages all of the resources in the

cloud. It uses a system of leases to determine which
participants are in the cloud and detect when someone
has left the cloud unexpectedly. It also stores
descriptions and remote references or proxies for all of
the resources in the system. When a producer GLA
registers a service with the brokering system, the GLA
sends a proxy object that is used later by a
corresponding consumer GLA to communicate with the
producer GLA via Java Remote Method Invocation
(RMI). When new services arrive or existing services
become unavailable, the broker also notifies potential
consumer GLAs of these changes, so that the best
service function available can be used to resolve a
consumer’s query.

Consumer A
GLA

C Producer C

Producer B

GLA
D Producer D

For better accuracy and efficiency, there are two
levels of matching in the ABELS system. The broker
stores the service information and performs the first-
level matching according to high-level categories or
groups such as “medical simulations” and “ocean
simulations”. That is, the broker determines which
services belong to the groups of interest. As indicated
in Figure 1, there may be multiple producers eligible for
matching with the query of a consumer. The matching
and ranking system, which is the focus of this paper,
performs the second-level matching by comparing the
query with all of the service functions belonging to the
services returned by the broker’s first-level matching.
Note that each service may have multiple functions,
only some of which may be relevant to the particular
query. Thus, the matching and ranking system
examines the query and all of the corresponding service
functions in detail, and ranks the matching service
functions according to their descriptions, data types,
keywords, and measurement units. For efficiency and
potential user interaction, the matching and ranking
system is local to each GLA and is actually
implemented as part of the GLA. The matching and
ranking process will be described thoroughly in the
remainder of this paper. Additional information on the
ABELS framework can be found at http://
thayer.dartmouth.edu/~abels.

In HLA, participants called federates participate in
a federation of interacting simulations. Participants
must be written to meet the federation object model
(FOM) standard, and all interactions between federates
occur through the runtime infrastructure (RTI), which
acts as a distributed operating system for the federation.
HLA is designed for tightly-coupled interactions, while
ABELS is designed for loosely-coupled interactions.

The web services framework (Curbera et al. 2002)

consists of a collection of protocols and standards for
communication (SOAP), service description (WSDL),
and service discovery (UDDI). Although it was not
designed specifically for simulation, the web services
framework can be applied to simulation interoperability.
However, it does not directly support the runtime
brokering or matching of data consumers with
producers, and this runtime matching ability is a key
feature of the ABELS system.

The Extensible Modeling and Simulation

Framework (XMSF) applies web-based technologies,
such as XML-based languages and the web services
framework, to create standards which allow modeling
and simulation interoperability between distributed
systems (Brutzman et al. 2002). Like the application of
the web services framework to simulation
interoperability discussed above, the XMSF does not
support runtime matching and brokering of resources.

The keyword and conversion databases provide

users with keywords, units, and file types to accurately
describe services and queries. The conversion database
also contains conversions between related units or file
types; thus, a consumer can receive data in meters even
if its matching service function produces data in feet.

The FAMAS Simulation Backbone (Boer et al.

2002; http://www.famas.tudelft.nl), like ABELS, is
designed to support interoperability between different
and distributed simulation models without requiring
adherence to HLA standards. However, the FAMAS
approach requires a predetermined scenario script to
control simulation runs. In contrast, ABELS is
adaptable to changing simulation resources at runtime,
allowing flexibility to changing circumstances.

There may be multiple clouds running at a

particular point in time, and each cloud has an
administrator that sets the policies of the cloud. For
example, one cloud may be set up for general use by
anyone at a particular location, such as a college or
university. Another cloud could be set up for use by
researchers in a particular field, such as cancer research
or oceanographic modeling. Although it is possible for
consumers and producers to belong to multiple clouds,
queries and service functions do not cross cloud
boundaries. That is, a query defined in a particular
cloud will match only those service functions belonging
to the same cloud.

3. GOALS OF MATCHING AND RANKING

The goal of matching and ranking is to find the
best available service to resolve a given query at
runtime, with no prior knowledge of the data format that
a particular service uses, or even where the resource is
located. Data producers and consumers have no
information about each other in advance of the matching
and ranking process, and need not conform to any
particular standards. Because several very similar
services may suit a given query, finding the best service
is often a difficult task. To optimize their performance,
the matching and ranking processes are implemented in
the generic local agent, although both are logically part
of the brokering system.

2.2. Related Work

The ABELS system is not the only one with the
goal of enabling the interoperability and reuse of
simulations. Other systems include the High Level
Architecture (HLA) (Dahmann et al. 1998), the web
services framework (Curbera et al. 2002), the First All
Modes All Sizes (FAMAS) project (Boer et al. 2002;
http://www.famas.tudelft.nl), and the Extensible
Modeling and Simulation Framework (XMSF)
(Brutzman et al. 2002).

Each service is defined in terms of what

functionality it offers in the form of one or more service
functions. Each service function is defined as a
sequence of input and output variables, with information
on data types, units, ranges, and subsets. A query,

The service represents everything the user entity
offers to the cloud, and its description should include
details that are common to all of its functions. This
includes group membership, keyword information, and
a text description. This text description contains
information about the origin of the service, the
computations performed, any relevant equipment (such
as a sensor setup), and anything else needed to describe
the service. This description should ideally be as
detailed as possible to facilitate the most informed
matches.

seeking to find a single service function, also defines
these parameters, and both query and service define a
short description. These variables and descriptions are
the sole basis for matching and ranking, and therefore
consistency when registering services and queries is
essential.

Two characteristics distinguish the ABELS
matching and ranking system from similar approaches
to linking simulations and other data services: its
loosely-coupled nature and its capacity for runtime
brokering. Unlike the High Level Architecture (HLA),
ABELS is designed as a loosely-coupled system. A
service is matched to a query solely on the basis of
inputs, outputs, and user-defined descriptions, allowing
ABELS to abstract both service and query from their
implementation details. Unlike the web services
framework, ABELS allows for runtime matching of
services to queries, allowing the system to adapt to
changes in the availability of networked resources.

Each function in a service has its own name and

description, and has a precise description of the input
data the function takes, the output data it gives, and
details of variables, the individual data items. These
details include variable order and grouping, data range,
and unit or file type. Figure 2, below, shows an
example set of variables, split into input (top) and
output (bottom) for a sample function. A variable could
be a number, a date, a string of text, or even a file. Each
variable has a name and a description, both for matching
and for human readability.

4. ESCRIBING SERVICES AND QUERIES D

The user entities in the ABELS cloud can produce
data, consume data, or both produce and consume data.
Data is produced through registered services, and
requests for data are specified through queries. Each
service and query is defined with information
specifically provided for the matching and ranking
process.

An example might better illustrate the distinction

between a service and its service functions. If we were
to have a database of tide measurements in a local bay
going back a century, there would be certain functions
we could offer based on that database. One function
might calculate the average high tide mark over a given
span of time. Another might simply give a table of tide
values over a given month. Another might give the
lowest tide reading for an entire year. Each function
shares the database but retrieves different information
from it and performs different calculations.

The first step in the matching and ranking process

is the definition of the service in question. Generally
this will be done only once for any given service, as the
definition persists and can be automatically re-registered
if the service goes offline and later comes back online
again. If the service itself changes, so must its
definition, though it need not be wholly rewritten.

In a similar manner, the query is written as though
specifying an ideal function, from the name of the ideal
service providing the function to the specifics of the
data flow. The user might specify a preferred system or
sensor setup, for example, and the ranges on its
variables would be based on custom factors.

A service consists of one or more related functions

that are offered from the same computer. For example,
a service may be defined to offer access to a weather
database, and the individual functions would offer
particular information from that database, such as the
temperature or wind speed on a certain day at a certain
location. Each function has its own data flow, taking in
the input information needed to retrieve or calculate its
output information. These service functions are
matched against the individual queries.

The process of defining a service is done through

the user interface to the GLA. It is done on a partly a la
carte style, where the component pieces of a service are
defined first, and then the service functions are built
from them.

Description Repeat Type Subset Range Units

Year 1 int [1907,2003] year
Month 1 string {"jan", …}

Num Rows 1 int (0, inf) unitless
Tide Mark Num Rows float (0.2, 40.3) inches

Figure 2: Sample List of Variables

The process starts with the name and definition of
the service. Individual clouds may have guidelines for
how these are written, such as to correspond to a certain
schema, but ABELS itself requires only that they be
plain ASCII text. The information here is common to
all the functions defined as part of this service, such as
location, database specifications, or contact person.

In the tidal measurements example, the service

description needs all of the general information about
the database, regardless of the individual functions it
offers. That description might consist of the following
text: “This service offers tide information for [the
fictional] Wheelock Bay, from a database maintained at
Dartmouth College using information collected by the
National Weather Service from March 1907 to present.
All measurements were taken at Hanover, New
Hampshire.”

The process continues by defining variable parts.

Variable name/description pairs are written at this stage
without associating them with an actual variable. There
are three additional parts that can be defined here. The
range is defined as a single numerical range in the style
(min,max) or [min, max], allowing “inf” to indicate no
defined upper bound beyond that of the type. The range
is unitless as defined, and may be matched with
different units. For example, the range “non-negative”,
defined as [0,inf), could be useful for many units.
Defining ranges separately reduces repetition in creating
the variables themselves.

A subset represents a finite list of allowable values

that a variable may take. This will most often be found
with string variables, such as {“north”, “south”, “east”,
“west”} or {“true”, “false”}. Numbers are also allowed
as subsets, such as the set of odd integers between 1 and
20. Numerical subsets, like ranges, are unitless.

The next step in our example, then, would be to

define the variable parts to use. Variable names would
include “month”, “year”, and “tide mark” with short text
definitions such as “Tide height at the Hanover
measuring station”. Because the years are constrained
by the measurement period, we could define a range
“years period” as [1907,2003]; however, this would
necessitate changing the service definition once 2004
data is available, so [1907,inf) is another possibility if
the database interface can accept and properly deal with
dates after the last entry. Similarly, we could define a
“non-negative” [0,inf) range for use with the tide mark,
or search the database to see what the actual global high
and low values are to give a more exact output range.
Using an actual range such as (0.2, 40.3) would be more
likely to properly match query definitions, but would
have to be updated if the database ever receives an entry
higher or lower than that.

Month values could of course be integers, but if our

particular database requires the three-letter month

abbreviations, that can be accomplished using a subset
“three-letter months” of the strings {“jan”, “feb”, “mar”,
…, “dec”}.

A unit or file type can be either user-defined or

selected from a list of pre-defined units and file types.
User-defined units are allowed, but may not allow
conversion to other units or file types; a match in this
case would have to be identical, which is generally
acceptable for files. The pre-defined units and file
types, however, are defined in the conversion database
maintained on a cloud-wide basis by the broker, and
have conversion routines defined to translate data from
one unit to another (e.g., inches to meters) or one file
type to another (e.g., MS Word to LaTeX). These
conversion routines may considerably expand the pool
of possible matches to a given query.

When these variable parts are defined, the user may

build variables from them and define the input and
output variable lists for each function. A variable must
have a name, description, and type such as integer,
floating point value, date, file, or text string. Units,
ranges, and subsets may be associated with a variable
here but are not required. Each variable also has a
repeat value, which can be either a number or a
reference to the value of a previously defined variable.
The single variable, then, becomes a column of data of
either fixed length or of a varying length to be specified
at runtime.

The variable order matters; when defining a service,

the input variables should be in the order that the service
expects the data, and the output variables should be in
the order in which the service returns the data. In
defining its ideal service, a query would assume that the
service takes the input data in exactly the order that the
consumer entity gives its data, and the output in the
order that the consumer expects its results.

Defining variables in this way is perfectly

acceptable, but may become repetitious if similar
variables are to be defined for multiple functions in the
service. To avoid this repetition, the user may save
individual variables or groups of variables as patterns.
The first use of patterns is simple reuse: once a pattern
is defined it may be used multiple times in multiple
functions. The pattern name and a repeat value are all
that is necessary to add a variable or group of variables
to the list. Because patterns can contain multiple
variables, a pattern can be used to quickly and easily
define multi-column tables of data.

Returning to the example, we know that the

variable representing a tidal reading will be used
multiple times, so we define a pattern named “tidal
reading”. We use the name/definition pair “tide mark”,
declare it of type floating-point number, with the “non-
negative” range, and we select the pre-defined unit
“inches”. We also give the pattern a repeat value of 1

because this is a single-variable pattern. Because year
and month are also variables we will use repeatedly, we
define appropriate patterns for them as well, “year” as
an integer with range “years period” and pre-defined
unit “years”, and “month” as a text string with subset
“three-letter months” and unit “months”.

Defining these patterns will make it easier to define

input and output lists. One service function offers the
lowest tide reading for a year, so we define an input list
with just the “year” pattern and an output list with just
the “tidal reading” pattern, with one repetition of each.
Another function offers a table of tidal values for a
given month. The input list for that function would just
be one instance of “year” and another of “month”. For
the output list, the database gives a column of readings
preceded by the number of rows. To define this, we can
go back and add a name/definition pair “number of
rows”/“The number of rows in the following table”, and
add a variable to the output list with that name, of type
integer, range “non-negative” (i.e., (0,inf)), and
unitless. After that, we add the pattern “tidal reading”
with a repeat value listing the variable we just defined.
This is interpreted as repeating this pattern a number of
times to be determined at runtime by the value of the
variable “number of rows”.

The next step in registering a service is to define

each service function in terms of its description and its
input and output lists, and save both lists to the service
definition. The function descriptions should describe
the calculations or data retrieval performed and more
general information not included in the service
description, such as average response time. The service
keywords are then selected, and the service can then be
registered in any available groups the user desires.

Concluding the example, we assemble the functions

from the input and output lists we just defined, together
with a short description for each function, such as “This
function returns the lowest tide mark over the entire
given year.” Just like the variable parts and patterns, we
can reuse the input and output lists. For instance, we
defined an input containing the year and an output
containing a single tide mark, which we could easily
reuse for a function to offer the highest tide mark for the
year. Once the functions are assembled, we select the
keywords “oceanography”, “New Hampshire”, “tidal
measurements”, etc., and register the whole service in
the “oceanography” and “Dartmouth College” groups.

The service definition will persist as long as the

producer GLA is connected to the cloud. When a
subsequent query is registered in any of this service’s
groups, the service description will be returned to the
consumer GLA for matching and ranking. This group-
based approach is the first-level lookup that is
performed by the broker. Each service that is returned
to the consumer GLA is examined and its functions

ranked in order to determine which service functions to
use for resolving queries.

5. THE RANKING PROCESS

The ranking process provides a basis for
quantitative comparison among services by assigning a
numerical rank to every service function that might
satisfy a particular user-defined query. This numerical
rank, a number between 0 (a non-match) and 1 (a
perfect match), is the weighted average of several
factors, each of which reflects some aspect of the fitness
of a particular function for a particular query. Each
individual factor has a value between 0 and 1.

The ranking process begins when a query is

registered with the cloud. The broker performs a first-
level lookup based on the groups of interest defined in
the query specification, and sends service information to
the consumer GLA for every service that has joined any
of the groups of interest. This first-level lookup is the
first of the two steps in the matching and ranking
process.

This collection of services will vary greatly in

terms of the functionality actually being offered. Some
of the services may contain functions that match the
query, but many will not. The goal of the second-level
matching and ranking process is two-fold; it must
determine which service functions are appropriate
matches for the query, and it must determine which of
the appropriate matches is the best match.

In determining the rank for a service function, the

matchmaker in theory achieves both goals. The rank, a
number between 0 and 1, indicates the relative fitness of
the function in satisfying the query. In order to best
satisfy its goals, the ranking process will be carefully
tested and adjusted so that the ranks of inappropriate
services are all clustered near 0, and the ranks of the
appropriate services near 1, with very few services in
between. In that way, the rank distribution will be
considered a general indicator of whether a given
service function is suitable or unsuitable.

In second-level matching and ranking, we first

consider the keywords defined for both query and
service. We compute the percentage of key words in the
query description that are also contained in the function
description. This percentage is one of the weighted
factors in our comprehensive rank.

Second, we consider the groups defined for both

query and service. For one of the weighted factors in
our comprehensive rank, we compute the percentage of
groups in the query description that are also contained
in the function description, which is also one of the
weighted factors in our comprehensive rank.

Finally, we assess the mapping success between

function and query, that is, the degree to which the

query specification is consistent with the function
specification. In this stage of ranking, we consider the
input and output variables for both service function and
query. A function that is well-mapped to a particular
query will contain the input and output variables
specified in the query, measured in units compatible
with the units specified in the query definition.

The mapping itself results from a variable-to-

variable comparison where, in principle, each variable
in the query is compared to each variable in the service
in an effort to determine which service variable, if any,
corresponds to it. On the left side of Figure 3, each
directed edge represents such a comparison between
variables for the query (Q) and service function (S). In
practice, there is no reason to compare a number to a
text string or to a file, or a file to a date, or any single
variable to a table of variables. We can exploit this to
reduce the number of comparisons we make by
assigning to each variable a compound type, where all
of the numbers (whether integer or floating point) are
taken together, all the files, strings, dates, and arrays are
each taken together, for a total of five compound types.
Only variables of the same compound type are
compared.

Inputs

Outputs

Q S Q S

Unmapped Mapped

Figure 3: Unmapped and Mapped Variable Sets

The right side of Figure 3 represents the ideal
outcome of the mapping process: Each variable in the
query has been linked to a corresponding variable in the
output. However, most of the functions being evaluated
will not be perfect or even good matches; they are
simply not matches suited to the query. These functions
will often have different numbers of variables than the
query, and so a one-to-one matching will not be possible
or even desirable. Even if the query and service
function have the same number of variables, if those
variables are not describing the same data, they should
be not be considered to correspond. It would be better
to leave variables “orphaned” or unmapped than to map
a query variable incorrectly as an indication of
suitability.

When each variable pair is compared, we consider

several factors. First, the name and description of the

variables are compared for similarity. Then, the units of
the two variables are compared. If they are the same,
that is a fair indication of a match, but if they are
different they may still match; for example, one may be
in centimeters and the other in inches. The conversion
database comes into play here, determining whether a
conversion path exists between the two units, and if so,
how long it is. Because the conversion database is
linked internally according to scale, a long conversion
path would indicate a likely mismatch, such as from
micrometers to nautical miles, which are both measures
of length but several orders of magnitude away from
each other.

The data flow indicates whether a match exists for

the range or subset. The chief criterion here is whether
one entity may be producing data that is out of range for
the other. Data flows from consumer input to service
input, and from service output to consumer output. The
ranges for the consumer inputs, then, should match or fit
inside the ranges of the service inputs, and the consumer
output subsets should be a subset of those of the service
output. For example, the consumer could offer
{“north”, “northeast”, “east”, “southeast”, etc.} but if
the service accepts only {“north”, “south”, etc.} then the
consumer could be providing input data that the
producer does not recognize. A service that does not
recognize data provided by the consumer would be
penalized in the ranking process.

Any function that is not well mapped to a particular

query faces a two-tiered penalty to its rank. Functions
that do not produce output variables specified in the
query are penalized heavily, as are functions that require
input variables not specified in the query. Similarly,
functions that produce output variables not specified in
the query are penalized to a lesser degree, as are
functions that do not require input variables specified in
the query, and functions that contain units not
convertible to units specified by the query. All such
penalties are assessed on a perfect rank of 1.0, and the
result is the final, and most important, factor in our
weighted average.

By design, any function that is ranked has been

returned by the first-level matching and therefore must
define at least one group that is also defined in the query
description. Accordingly, any ranked function must
have a positive rank. We reserve the negative and zero
ranks for ranking errors.

In addition to the automatic ranking, the user has an

opportunity to examine the service functions and their
assigned ranks. The first level of control that a user has
is to designate certain services as more or less desirable
than others. By labeling a service as preferred,
deprecated, or just unsuitable, the user can determine
the order in which the GLA will select services during
query resolution. The second level gives the user
control over the ranking weights themselves, such as the

The consumer GLA disassembles the output data
stream according to the variable list in the service
definition, and uses the mapping to reassemble the data
for the consumer. It performs unit and file conversions,
and reforms the data into a stream to return to the
consumer entity, which may be waiting for the data (as
a blocking query) or planning to contact the GLA at a
later time to collect the data (as a non-blocking query).

weight of the penalty given to missing variables or
missing keywords.

6. THE QUERY RESOLUTION PROCESS

Once the query has been defined and registered,
and the services returned from the first-level lookup
have been ranked, the GLA is ready to resolve queries.
The resolution process, which is shown in Figure 4,
begins when the consumer entity connects to the GLA,
provides the name of the query to be resolved, and
sends the service input as a single data stream (Step 1).

7. CONCLUSIONS AND FUTURE WORK

The current implementation of the matching and
ranking system is only partially complete; currently, it
ranks on the basis of the service description, keywords,
text descriptions, and number of variables. In the near
future, the mapping process will be implemented, as
will the conversion database. Further work will be
required in several areas, such as finding more-
sophisticated ways to match the text descriptions,
adding user control, and determining the optimal
weighting for different aspects of the ranking process.

The first task in the resolution process is to select

the service to use. The GLA first looks at all of the
services that the user has marked preferred, and selects
from that list the service function with the highest rank.
If that service is unavailable, it steps through the list of
preferred services until it has exhausted them, and only
then goes to the unmarked services, then to the list of
deprecated services. If no services can be found in
these three lists, the resolution fails rather than select an
unsuitable service.

Individual user groups may require a more

customized system. Researchers whose simulations
adhere to the SEDRIS format, for example, would
require unit conversion to and from its Environmental
Data Coding Specification (EDCS) standard for units.
(Additional information on SEDRIS can be found at
http://www.sedris.org.) Some unit schemes will be
included in the standard ABELS conversion database,
but new standards or ones that are not widely used may
also be needed by certain users. To accomplish this, a
flexible administrative interface for the conversion
database will allow those groups managing an ABELS
cloud to specify any number of units and file types and
the conversion routines among them, without worrying
about inconsistencies among service and query
definitions.

 Distributed
Brokering

System

GLA A

Consumer A

GLA B

Producer B

1

2

3
4

5
6

ACKNOWLEDGMENTS

 This work is supported by National Science
Foundation KDI Grant 9873138 and U.S. Army Corps
of Engineers contract DACA42-01-P-0288.

Figure 4: Data Flow Between Producer and Consumer
During Query Resolution

When a service function is selected to satisfy the

query resolution, the consumer GLA examines the
mapping that was generated during the ranking process.
It uses this information to determine how to rearrange
variables and determine which variables to omit. The
GLA extracts the data from the consumer’s data stream,
divides it into variables, rearranges as needed, and
performs any necessary unit and file conversions. It
formats this into a single data stream appropriate for the
producer software, and sends it to the producer GLA
(Step 2). The producer GLA contacts the producer
entity (Step 3) with the data stream formed by the
consumer GLA, and waits for the producer to return its
output data stream (Step 4). This data is passed back to
the consumer GLA (Step 5). Note that the work done
by the producer GLA is kept to a minimum, to keep the
burden on the producer side as small as possible.

REFERENCES

Boer, C.; Y. Saanen; H. Veeke; A. Verbraeck. 2002. "Final
Report, Project 0.2 - Technical Design, Simulation
Backbone FAMAS.MV2." TRAIL Research School,
Delft.

Brutzman, D.; M. Zyda; J. M. Pullen; K. Morse. 2002.
"Extensible Modeling and Simulation Framework
(XMSF), Challenges for Web-Based Modeling and
Simulation", Findings and Recommendations Report:
Technical Challenges Workshop, Strategic Opportunities
Symposium (Fairfax, VA, 22 October, 2002), 1-52.

Curbera, F.; M. Duftler; R. Khalaf; W. Nagy; N. Mukhi; S.
Weerawarana. 2002. “Unraveling the web services web:
an introduction to SOAP, WSDL, and UDDI.” IEEE
Internet Computing 6, No.2, (Mar./Apr.), 86-93.

Dahmann, J.; F. Kuhl; and R. Weatherly. 1998. “Standards for
Simulation: As Simple as Possible but Not Simpler, the
High Level Architecture for Simulation.” Simulation, 71,
No.6 (Dec.), 378-387.

Kumaran, S.I. 2002. Jini Technology: An Overview, Prentice-
Hall, Upper Saddle River, N.J.

Mills-Tettey, G.A.; G. Johnston; L.F. Wilson; J.M. Kimpel;
and B. Xie. 2002. “The ABELS system: designing an
adaptable interface for linking simulations”. In
Proceedings of the 2002 Winter Simulation Conference,
Volume 1 (San Diego, CA, December 8-11), 832-840.

Mills-Tettey G.A. and L.F. Wilson. 2003a. “Security issues in
the ABELS system for linking distributed simulations”.
In Proceedings of the 36th Annual Simulation Symposium,
(Orlando, FL, Mar. 30 – Apr. 2). IEEE, Picataway, N.J.,
135-144.

Mills-Tettey, G.A. and L.F. Wilson. 2003b. “A Security
Framework for the Agent-Based Environment for
Linking Simulations (ABELS)”. Simulation, to appear.

Murphy, J.P.; G.A. Mills-Tettey; L.F. Wilson; G. Johnston;
and B. Xie. 2003. “Demonstrating the ABELS system
using real-world scenarios”. In Proceedings of the 2003
SAINT Conference, (Orlando, FL, Jan. 27-31). IEEE,
Picataway, N.J., 74-83.

Wilson, L.F.; D.J. Burroughs; A. Kumar; and J. Sucharitaves.
2001. “A framework for linking distributed simulations
using software agents”. In Proceedings of the IEEE 89, no.
2, (Feb.), 186-200.

Wilson L.F.; B. Xie; J.M. Kimpel; G.A. Mills-Tettey; and G.
Johnston. 2002. “The Design of the Distributed ABELS
Brokering System”. In Proceedings of the Sixth IEEE
International Workshop on Distributed Simulation and
Real-Time Applications (DS-RT) (Fort Worth, TX, Oct.
11-13). IEEE, Picataway, N.J., 151-158.

Wilson, L. F.; W. R. Lochridge; and G. A. Mills-Tettey. 2003.
"The Secure ABELS Brokering System". In Proceedings
of the 15th European Simulation Symposium (Delft, The
Netherlands, Oct. 26 - 29), SCS, San Diego, CA, to
appear.

AUTHOR BIOGRAPHIES

JOSHUA O. PETEET is a master’s student at
Dartmouth’s Thayer School of Engineering. He
received his AB degree in computer science from
Bowdoin College in 2002. His email address is
Joshua.O.Peteet@dartmouth.edu.

JOHN P. MURPHY is a PhD student at Dartmouth's
Thayer School of Engineering. He received his BS
degrees in computer engineering and electrical
engineering from West Virginia University in 2001.
His email address is John.P.Murphy@dartmouth.
edu.

LINDA F. WILSON is an associate professor at
Dartmouth’s Thayer School of Engineering. She

received her BS degree in mathematics from Duke
University in 1988 and her MSE and PhD degrees in
electrical and computer engineering from the University
of Texas at Austin in 1990 and 1994, respectively. Her
email address is Linda.F.Wilson@dartmouth.edu
and her web page can be found at http://
thayer.dartmouth.edu/~lwilson.

	KEYWORDS
	ABSTRACT
	3. GOALS OF MATCHING AND RANKING
	5. THE RANKING PROCESS
	6. THE QUERY RESOLUTION PROCESS
	
	ACKNOWLEDGMENTS

	REFERENCES

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

