
THE SECURE ABELS BROKERING SYSTEM

Linda F. Wilson, W. Riley Lochridge, and G. Ayorkor Mills-Tettey
Thayer School of Engineering

Dartmouth College
Hanover, NH 03755-8000 USA

E-mail: Firstname.Lastname@dartmouth.edu

KEYWORDS

Distributed simulation, brokering systems, security,
dynamic information exchange, software agents,
simulation tools.

ABSTRACT

The Agent-Based Environment for Linking
Simulations (ABELS) system is a software framework
whose goal is to enable independent simulations and
other data resources to exchange information
dynamically without prior knowledge of each other.
Specifically, it enables the dynamic formation of a
“cloud” of simulations and other networked resources
such as sensors and databases. This data and simulation
cloud uses a distributed brokering system to match data
consumers in the cloud with appropriate data producers,
based on registration information submitted by the
various participants in the cloud.

In a system of interacting independent resources,

there are several security concerns, including how to
prevent undesirable entities from joining and
participating in the cloud, how to protect sensitive
information, and how to ensure the integrity of the cloud
so that it functions reliably. This paper presents the
redesign of the ABELS brokering system to incorporate
security features that address these concerns.

1. INTRODUCTION

The Agent-Based Environment for Linking
Simulations (ABELS) system is a software framework
whose goal is to enable independent simulations and
other data resources to exchange information
dynamically without prior knowledge of each other
(Kumar et al. 2002; Mills-Tettey and Wilson 2003a;
Mills-Tettey and Wilson 2003b; Wilson et al. 2001). The
ABELS system allows a collection of independent
networked resources to associate with each other in what
is referred to as a data and simulation cloud. The
autonomous resources are producers and/or consumers
of data. Individual cloud participants join and exit the
data and simulation cloud as needed and have no prior
knowledge of the other cloud participants. A distributed
brokering system is used to match data producers to
consumers and initiate communication between cloud
participants, but it does not control the independently-
designed participants in any way. Each organization

participating in an ABELS cloud is responsible for
determining what resources it makes available to the
cloud and which data consumers are eligible to access its
services.

The ABELS system is designed for loosely-coupled

interactions between participants. That is, participants in
the cloud are not required to conform to a common
stringent standard, and consumers are not statically
linked to particular producers of information. In
addition, there are no tight interdependencies among
cloud participants.

There are many security concerns inherent in the

ABELS system. These include concerns about how to
protect undesirable entities from joining and
participating in the data and simulation cloud, how to
protect sensitive information produced by services in the
cloud from being accessed by unauthorized entities, and
how to ensure the integrity of the cloud as a whole so
that it functions reliably. To mitigate the security threats
in the system, the ABELS architecture must include
mechanisms for access control, privacy and integrity,
and logging. In addition, each cloud participant must be
able to define its own security needs and capabilities,
and the cloud must guarantee that each participant’s
security requirements are met.

As discussed in Mills-Tettey and Wilson (2003a;

2003b), we have recently redesigned the ABELS system
to incorporate appropriate security mechanisms.
Security experts have noted that security must be
designed into a system’s architecture rather than added
at a later date. Thus, security features have been
integrated throughout the ABELS system.

This paper describes the redesign and

implementation of the secure ABELS brokering system,
which is responsible for maintaining a database of cloud
participants and matching data consumers with
appropriate data producers. Section 2 describes the
various components of the ABELS system, while
Section 3 discusses related systems and Sun
Microsystems’ Jini technology, which is used by
ABELS. Section 4 presents the design of the secure
brokering system while Section 5 discusses its
implementation. Finally, Section 6 presents conclusions
and areas for future work.

mailto:Firstname.Lastname@dartmouth.edu

2. THE ABELS SYSTEM

2.1. Overview

The Agent-Based Environment for Linking
Simulations (ABELS) is a software framework that
enables the dynamic formation of a cloud of autonomous
simulations and other data resources, which can then
interact without prior knowledge of other cloud
participants. As shown in Figure 1, the ABELS system
architecture consists of three basic types of components:
user entities, generic local agents (GLAs), and a
distributed brokering system. An optional user interface
is provided to permit human interaction with the system
via the GLAs.

Figure 1: Basic Framework Connecting
Elements in the Cloud

The cloud participants are the user entities which

are producers and/or consumers of data. For example, a
cloud might include simulations, databases, and sensors.
A data producer provides a service with one or more
service functions, while a data consumer makes requests
or queries for information. User entities join and exit
the data and simulation cloud as needed and have no
prior knowledge of the other cloud participants. Each
organization participating in an ABELS cloud is
responsible for determining what resources it makes
available to the cloud and describing those services
accurately.

A user entity connects to the cloud via a software

agent known as the generic local agent (GLA). Each
GLA serves as the cloud interface for one or more
producer and/or consumer entities, owned and operated
by the same organization. The user entity uses its GLA
to join or exit the cloud, register its services and service
functions, and make queries for data. A data producer is
said to interface with the cloud via a producer GLA,
while a data consumer participates via a consumer GLA.
The GLA is responsible for adapting information to the
specific needs of its producer or consumer entities. For
example, a consumer GLA is responsible for handling
any data format, unit, and file conversions that are
necessary between its consumer and the producer that is
serving it. A producer GLA is responsible for passing
input data to a desired service, executing the desired
service function, and returning the output data to the
corresponding consumer GLA.

The distributed brokering system forms the core of
the cloud and is responsible for managing cloud
resources and linking consumers to appropriate
producers of information. In particular, it stores
descriptions and remote references or proxies for all of
the resources in the system, and it uses a system of
leases to determine which participants are still in the
cloud. Furthermore, it matches and ranks those service
functions that may satisfy a given consumer’s query.
Once the brokering system links a consumer GLA with a
corresponding producer GLA, communication occurs
directly between the GLAs without going through the
brokering system. In Figure 1, GLAs A and B have a
direct connection, indicating that a match occurred
between a producer on one end and a consumer on the
other end. The brokering system is described in detail
beginning in Section 4.

A key feature of ABELS is its runtime matching of

consumers with suitable producers, and this matching is
based on textual descriptions of the participants. A
service definition includes the name, location, and
description of the service along with detailed
information about the functions it provides. A service
definition also specifies one or more high-level
categories or groups that characterize the service. For
example, a service would belong to the “weather
simulations” group if it provides information about the
weather conditions in Hanover, New Hampshire. A
query is defined as the ideal function desired by the
consumer. For a given consumer query, ABELS must
evaluate all service functions that may match the query
and rank those functions so that the most suitable one is
chosen to resolve the query. A query is resolved using
the best-available service function, so a query resolved
by one function today may be resolved by a different
function next week.

For better accuracy and efficiency, there are two

levels of matching in the ABELS system. The first-level
matching is based on the groups of interest for the given
query. That is, the brokering system generates a list of
those services that belong to the groups specified in the
query definition. In the second-level matching, the
details of the query are compared with all of the service
functions belonging to the list of services, and the
service functions are ranked according to their suitability
for the query. Details of the matching and ranking
process can be found in Peteet et al. (2003). Additional
information on the ABELS system can be found at
http://thayer. dartmouth.edu/~abels.

2.2. Security Issues

As discussed in Mills-Tettey and Wilson (2003a;
2003b), we have recently redesigned the ABELS system
to incorporate various security features. In particular,
the participants may have varying security needs, and
the cloud must guarantee that each participant’s security
requirements are met.

Distributed
Brokering

System GLA
A

GLA
C

GLA
B

User Interface

User
Entity

C

User
Entity

B

User Interface

User
Entity

A

The specific security capabilities in ABELS can be
classified as access control capabilities, privacy and
integrity capabilities, and logging capabilities. Access
control consists of the related processes of authentication
and authorization. Authentication verifies the identity of
an entity while authorization determines what
permissions are granted to the authenticated entity.
Privacy protects sensitive information from being
viewed by unauthorized parties, while integrity provides
the ability to detect and protect the information from
tampering. Finally, logging is used to detect and audit a
security breach.

Security features in ABELS appear at two levels:

centralized aspects are handled by the brokering system,
while decentralized aspects are managed by the
individual GLAs in the cloud. The brokering system
security focuses primarily on ensuring the integrity of
the cloud, while the GLAs provide the primary means of
protecting the entities participating in the cloud. In
particular, a GLA may authenticate the users that wish to
use it to communicate with the cloud, to prevent access
by unauthorized users. In addition, a producer GLA
may place limits on the consumer GLAs that wish to use
its services. The brokering system may authenticate
GLAs before allowing them to join the cloud, in order to
prevent unauthorized participation by an illegal GLA.
Encryption can be used to protect sensitive information
passed between a GLA and its user entities, between two
GLAs, or between a GLA and the brokering system.
Finally, both the brokering system and the GLAs log all
successful and unsuccessful attempts to add GLAs to the
cloud or connect user entities to the GLAs.

The complete ABELS security framework is

discussed in Mills-Tettey and Wilson (2003a; 2003b).
This paper presents the architecture of the secure
brokering system, and specific security details are given
in Section 4.3.

3. RELATED WORK

3.1. Other Approaches

ABELS is not the only system designed to create a
dynamic, distributed community of heterogeneous
entities, simulations, and services. Other approaches
include the High Level Architecture (HLA) and the web
services architecture.

The High Level Architecture (HLA) (Dahmann et

al. 1998) is a software architecture for creating a
federation of simulations communicating across a single
runtime infrastructure (RTI). HLA is designed to support
tightly-coupled interactions between simulations. A set
of rules specifies the object models to which federations
(communities of simulations) and federates (individual
simulations) must conform in order to work with other
entities in the system. To participate in an HLA
federation, simulations must be written to conform to the

federation object model (FOM).

Unlike HLA, the web services architecture (Curbera

et al. 2002) provides a mechanism for communication
and data exchange between loosely-coupled entities.
WSDL (Web Service Description Language), UDDI
(Universal Description, Discovery and Integration), and
SOAP (Simple Object Access Protocol) are three XML-
based protocols that enable the description, registration,
and invocation of web services. XML provides a
language- and platform-independent communication
mechanism that is an important feature of the web
services architecture. Missing in the current architecture,
however, is a mechanism for the runtime brokering
between information consumers and producers that
would allow the transparent replacement of one service
provider with another one.

The ABELS system described in this paper targets

loosely-coupled simulations and data resources,
requiring little or no changes to existing simulations.
Developed with Java and Jini, ABELS is designed to be
platform-independent and currently is being developed
on both UNIX and Windows systems. A brokering
system is used to perform runtime matching of data
producers and consumers, and software agents act as
interfaces through which entities can participate in the
ABELS cloud. These software agents enable the ABELS
system to adapt to a wide range of simulations and
resources without requiring these entities to be written in
a specific language.

3.2. Jini

Our distributed brokering system is developed in
part using Sun Microsystems’ Jini technology (Kumaran
2002). Jini is a protocol-independent, Java-based
programming model that simplifies the development of a
system of distributed services. In particular, the Jini
application programming interface (API) handles tasks
associated with the discovery and lookup of distributed
services and the description of service attributes. Jini
also provides event listeners and leases that are used to
manage the networked resources. The ABELS brokering
system uses the building blocks provided by the Jini
architecture and its reference implementation to manage
the cloud resources and match data consumers with
suitable producers.

4. THE SECURE BROKERING SYSTEM

4.1. Overview

The ABELS system links loosely-coupled data
resources to form a distributed data and simulation
cloud. The brokering system serves as the central
framework through which the cloud is formed and
maintained. To ensure efficiency and fault tolerance,
the brokering system is designed using distributed
database principles.

As discussed in previous work (Kumar et al. 2002;
Wilson et al. 2002), the ABELS brokering system must
serve as a database of participating services and match
consumers with suitable producers. However, a better
analogy compares the brokering system to a public or
school library. Just as a library maintains and organizes
its collection of books, the brokering system stores and
categorizes each of the services registered within it. Just
as books are organized into broad subject categories,
services are organized into high-level categories called
groups. Just as a librarian may take a reader’s
description of interests and recommend an appropriate
book, the brokering system uses a detailed description of
the desired service to match the consumer to the
producer that best meets its needs. Furthermore, just as
a borrower must obtain a borrowing card and present it
to check out a book, so must a producer or consumer
undergo identity-based authentication and authorization
before joining or using services of the cloud.

The brokering system consists of the broker, the

matching and ranking system, and the keyword and
conversion databases. The broker manages the resources
in the cloud, the matching and ranking system evaluates
producers on behalf of consumers, and the keyword and
conversion databases provide information needed for the
matching process. The broker is implemented using
Java and Sun’s Jini technology, and the other
components are implemented using Java.

The current implementation of the ABELS

brokering system includes several Jini lookup services,
each of which can run on a separate machine and
supports several high-level categories called groups.
The lookup service plays the role of registrar, or card
catalog, for the cloud, managing a persistent database of
all cloud participants by storing their service
descriptions and proxies, which are described in Section
4.2.

The lookup service facilitates automated system

startup and cloud formation by utilizing Jini's discovery
and join protocols. It does this by providing its proxy to
all GLAs as they join the cloud, allowing them to initiate
contact at any later time. The lookup service also
provides the means by which ABELS maintains a robust
and self-healing network.

 Due to the potential volatility in any distributed

network, the ABELS cloud must be long-lived and
resistant to sudden changes in the system that could
initiate a system crash. The lookup services help ensure
this by storing registration information for all GLAs in
the cloud and discarding service proxies of lost GLAs.
The lookup services support the join protocol, which
assigns unique service IDs to all cloud entities. All
GLAs in the cloud must conform to this protocol and
maintain, for each service, the service ID, the list of
groups it wishes to support, its Jini lookup entries, and
the set of locations of the lookup services in which it has

registered (Li 2000). The lookup services also grant Jini
leases for an entity’s GLA once it has joined the cloud.
A lease represents the GLA’s proof of interest, allowing
the entity to remain registered in the cloud as long as its
lease has not expired. The GLA must renew its lease
within the finite lease duration, according to the terms
set by the lookup service. Note that the administrative
overhead of handling leasing is distributed away from
any one central component by placing it in the lookup
services, thereby increasing fault-tolerance and reducing
the potential for bottlenecks.

4.2. Services and Queries

Having joined the ABELS cloud, a producer GLA
may register any of its services with multiple Jini lookup
services, based on the groups the services wish to join.
To locate the lookup services with which it wishes to
register, the GLA contacts the broker’s communication
module, which finds and returns the locations of the
lookup services that support the desired groups. Before
a service can be registered, the GLA must provide the
lookup service with the following information: the
group(s) it wants to support, a service description, and a
service proxy object that is used by a consumer GLA to
access the service. Within each service description there
may be multiple function descriptions. In each function
description, the user defines a sequence of input and
output variables, including information on data types,
units, ranges, and subsets. A query is a description of the
ideal service desired and is in the form of a function
description.

Similarly, a consumer GLA that has joined the

cloud can obtain the locations of lookup services that
support its desired groups. After receiving the locations
of the lookup services, the consumer GLA contacts them
to obtain information on the services belonging to the
groups of interest. This is the first level of the two-level
process that matches producers to consumers.
Specifically, the consumer GLA receives the service
registration and service proxy information for each
service that might meet the needs of the consumer’s
query. A standing request is also left with the broker; if
a service that supports the desired group(s) later joins
the cloud, the system informs the consumer GLA via
remote event handlers. Thus, the consumer GLA
knows at all times which services of interest are
currently in the cloud. With this information, the
consumer GLA interacts with the matching and ranking
system for the second-level matching. In order to
understand this process, a brief description of the
matching and ranking system is in order.

Matching and ranking determines the service

function that best resolves a given query (Peteet et al.
2003). The matching and ranking process is designed as
part of the brokering system but is implemented in the
GLA in order to optimize performance and facilitate
cloud scalability. The matching and ranking process is

based on the service description described above,
making syntactic consistency critical. Accordingly, the
human user can use the keyword database to determine
which keywords are appropriate, and this will increase
the likelihood of a suitable match.

The loosely-coupled nature and runtime brokering

capability of ABELS differentiate it from related
approaches like HLA and the web services framework.
ABELS is a loosely-coupled system in which a service
function is matched to a query exclusively on the basis
of inputs, outputs, and a user-defined description. As a
result, the matching process abstracts both services and
queries from their implementation details, thus allowing
a multitude of different implementation methods. The
runtime brokering of services to queries allows the
system to adapt to changes in network availability,
providing a consumer with the best possible service
available at the time of query resolution.

For each service function in the groups of interest,

the matching and ranking system provides the consumer
GLA with a numerical rank between 0.0 and 1.0, with
1.0 being a perfect match with the function. The rank is
a weighted average of several factors that reflect various
aspects of the fitness of a function for the particular
query. While default weights are typically used, the
human user may also customize the factor weights for
his particular needs. To augment the ranking, a user
may designate a service as preferred, deprecated, or
unsuitable.

When resolving a query, the consumer GLA first

attempts to use the highest-ranked preferred service. If
that service is unavailable, it goes through the preferred
services in descending order by rank. If no preferred
services are available, the consumer GLA tries to
connect to unmarked services in descending order of
rank. If the query is still unresolved, the process
continues through the list of deprecated services. If the
query is still unresolved at this point, it will fail;
unsuitable services are never used to resolve the query.

Once the consumer GLA has connected to a

producer GLA using the provided service proxy,
communication occurs directly between the two GLAs.
If the service goes down during the process of
information exchange, the consumer GLA will once
again attempt to resolve the query, starting with the best-
available service function.

4.3. Brokering System Security

As described in Mills-Tettey and Wilson (2003a;
2003b), security in ABELS is designed with a two-tier
approach. The brokering system provides centralized
security, restricting access to the cloud and maintaining
cloud integrity. The brokering system is responsible for
determining which GLAs may join the cloud and what
permissions they have as cloud participants. This

determination is known as access control and is
comprised of the related concepts of authentication and
authorization. Brokering system authentication entails
the verification of a GLA’s identity, while authorization
determines the specific permissions granted to the GLA.
The GLA itself provides decentralized cloud security
that prevents malicious use of the GLA as an entry point
for attack.

An ABELS cloud is classified as open, semi-open,

semi-closed, or closed, depending on the security
protocols established when the cloud is initially created.
The human user creating the cloud, known as the cloud
administrator, is responsible for selecting the cloud’s
security protocols. The cloud administrator is assisted in
this process by using a graphical user interface (GUI).

In the open cloud, all producers and consumers

must conform to specified IP address restrictions. For
example, an academic institution may wish to allow any
user connecting from within its IP domain to connect to
the cloud while all IP addresses outside this domain are
denied. While restrictions are required, they can be set
to allow all IP addresses.

All cloud classifications use IP restrictions, and

additional forms of authentication are used in the semi-
open, semi-closed, and closed clouds. In these three
cloud classifications, the default authentication method
is the use of X.509 digital certificates issued by a trusted
authority (usually the brokering system, although this is
customizable).

In a semi-open cloud, all producer GLAs must

undergo identity-based authentication and authorization
by presenting a digital certificate. The digital certificate
is verified by the broker’s access control module, which
is described in Section 5.1. Once the producer GLA is
authenticated, the access control module checks the IP
address restrictions in place, and if the entity conforms
to the restrictions, it joins the cloud. Consumer GLAs,
however, are subject only to IP restrictions when joining
the cloud. Within such a cloud, the brokering system
effectively guarantees that data obtained from the cloud
is from known producers while consumers may
participate under less stringent requirements. This is
analogous to the access control used for a professional
organization’s web site, such as IEEE XPlore
(ieeexplore.ieee.org), in which a data producer is
guaranteed by the organization, while any user logging
in from a member institution’s IP domain is granted
access.

In the closed and semi-closed clouds, both

producers and consumers must authenticate themselves
using digital certificates. Both clouds require identity-
based authorization, but it is in the requisite GLA
security functionality that they differ. In a semi-closed
cloud, a participant GLA authenticates all its human
users, but does not necessarily authenticate all its

consumer entities or encrypt service input and output
information, as described in Mills-Tettey and Wilson
(2003a; 2003b). This provides an environment in which
the cloud guarantees the legitimacy of information
provided but not necessarily its privacy.

In a closed cloud, the GLA authenticates all entities,

and all information passed between producers and
consumers is encrypted. The GLA’s mandatory
authentication of all entities adds legitimacy to the
service registration and other information the GLA
provides to the cloud. The encryption ensures that
unauthorized users do not obtain sensitive data. Closed
clouds are appropriate for environments where security
and privacy of data is of great importance, such as at a
military research agency.

When creating the cloud, the cloud administrator

may select from a list of available authentication
methods. As described in Mills-Tettey and Wilson
(2003a; 2003b), ABELS currently supports digital
certificates, username/password pairs, Windows, Unix,
and Kerberos authentication methods. Additional
authentication features may be added at a later date.

Once approved by the brokering system for

admission to the cloud, the GLA receives a Kerberos-
style ticket, called an entry ticket, which is presented to
any ABELS component or entity in all subsequent
interactions. This ticket proves that a user has been
authenticated and authorized to join the cloud, and it
functions in the same way as a library card, verifying the
entity’s identification and authorization and enabling it
to participate within the cloud and carry out its actions.
This process is shown in Figure 2, in which GLA A and
the access control module must authenticate with one
another using digital certificates. Once authenticated,
the access control module checks that GLA A conforms
to the IP restrictions and, if authorized, returns an entry
ticket to the GLA. This figure also mentions the lookup
service references (proxies), which would be returned to
the GLA in response to a given query, as described in
Section 5.3. Finally, with the lookup service proxies in
hand, the GLA contacts Lookup Service 1 to either
register a service or perform a first-level lookup after
first presenting its entry ticket to the lookup service.

Figure 2: GLA Authentication, Authorization,
and Cloud Participation

As mentioned previously, the brokering system has
been redesigned to incorporate various security features.

This

odular manner, where
 specific functionality.

The

Figure 3: Com ts of the B

 redesign includes a shift from multicast
functionality to an exclusively unicast system. Unless
otherwise specified, Jini uses multicasting in its join and
discovery protocols. Multicasting is a broadcast-based
form of communication in which any computer listening
on a prespecified port (e.g., 4160 is used by Jini) will
receive all packets sent. While multicast allows for easy
bootstrapping and discovery of available resources by
new entities, it represents a major security hazard in that
any entity listening to port 4160 would receive Jini
announcement packets describing the current cloud
composition in terms of lookup service locations and
available groups. Because of the information leak this
represents, we determined that only unicast
communication should be used in ABELS. The security
benefit in switching from multicast to unicast is
analogous to a person announcing his whereabouts and
activities on a telephone versus a megaphone. While a
telephone (and unicast) are not invariably secure, using a
single channel approach requires that someone
proactively tap the phone line (or intercept packets) in
order to hear what is being shared. The unicast
functionality is one aspect of the comprehensive, two-
tier security framework for the cloud and its participants.

5. IMPLEMENTATION AND DESIGN

5.1. Components of the Broker

The broker is designed in a m
each component has a distinct and

se components interact with one another, the lookup
services, and the rest of the ABELS system on an as-
needed basis. With the modular design of the broker,
future changes in the functionality may be easily
implemented by adding a component without changing
the entire structure of the system. As shown in Figure 3,
the core implementation of the broker consists of six
components: communication module, access control
module, load balancing module, data recovery module,
resource manager module, and meta lookup service.
Figure 3 also shows the Jini lookup services (LUS) used
by the broker.

ponen roker

GLA A Brokering System
Access Control Module

 Lookup Service 1
“Ocean Simulations”
 “Weather Models”

1) Mutual authentication to join cloud

3) Entry ticket &
 service/query
 information

Lookup Service 2

2) Lookup service references
 & entry ticket

Communication

LUS 1 LUS 2

Load Balancing

Data
Recovery

LUS n

Meta Lookup Service

Resource
Manager

Access
Control

“Weather Databases”
 “Wildlife Models”

The co andles
all commun ion coming into or leaving the broker.
The

tity’s GLA

s

ort the group(s) of interest.

Upo on
module delegates authentication of the connecting GLA
to t

sed to authenticate
the identity of a GLA and control access to resources in
the

d by the

•

g the registration load among lookup services,
and

module manages the cloud
data keeping track of the lookup services and the groups
they

 also performs certain
adm strative tasks. As appropriate, the module takes
care

com unication between the resource manager and the

mmunication module of the broker h
icat

 communication module provides three main
functions:

• Process join and exit requests sent by a user
en

• Process service registration requests from data
producer GLA

• Process consumer GLA requests for lookup
services that supp

n receiving a join request, the communicati

he access control module. Once an entity has
successfully joined the cloud, it can send other messages
to the communication module. On receiving a message,
the communication module verifies the sender’s entry
ticket to confirm that the sender is a valid cloud
participant. If the sender is approved, the
communication module examines the tag appended to
the entry ticket, since the tag specifies the type of
communication contained within the message. Based on
the tag, the communication module routes the message
to the appropriate broker module and, if necessary, later
returns a reply to the sending GLA.

The access control module is u

cloud. This module is called when an entity initially
wants to join the cloud or when the broker’s access
control list is either referenced or modified by an
administrator. As mentioned previously in Section 4.3,
there are four security classifications for an ABELS
cloud, and the access control module implements the
necessary functions of the various security protocols. In
addition to the list of IP address restrictions, there is a
second list containing the IP addresses of those who are
granted administrative privileges for the brokering
system. This module is used in two situations:

• When a user entity joins the ABELS cloud for
the first time, this module will be calle
broker’s communication module to authenticate
the entity’s GLA, using its digital certificate.
When a request is made for an administrative
modification to a lookup service or group, the

Dig ocket layer (SSL)
protocol are used to guarantee secure communication
with

module must check its access control list to
determine whether the requester is authorized
for administrative privileges.

ital certificates and the secure s

in the brokering system. Once access is approved,
the broker issues the entity’s GLA an entry ticket that
must be presented before any subsequent
communication with ABELS components or entities.
After receiving an entry ticket, the GLA can
communicate directly with the lookup services, for
example.

The load balancing module is responsible for
distributin

also ensuring that lookup services are distributed
evenly across the network. Load balancing is carried out
automatically to maintain a robust system that is not
bogged down by excessive load concentration. Manual
data distribution by a human administrator is also
allowed. Automatic load balancing occurs under two
scenarios: too many groups are supported by a single
lookup service, or too many lookup services are running
on a single computer. Currently, a lookup service
exceeding the group threshold will have some of its
supported groups (and the serviced proxies of the
services that support these groups) moved to a lighter-
loaded lookup service. To accomplish these
modifications, the load balancing module sends the
required changes to the resource manager module, which
actually moves the groups. In the future, we will
consider additional load balancing factors, including the
load of the Java Virtual Machine, the number of network
connections to any one machine, and the hardware
capabilities of the machine.

The resource manager
,
 support. Thus, the resource manager maintains a

list of available resources in the cloud. When a
consumer GLA submits a query, the resource manager
uses this list to perform a first-level lookup on the
query’s groups, and it returns to the consumer GLA the
lookup service(s) of interest.

The resource manager
ini
 of adding, removing, changing, and editing lookup

services. Some of these changes will occur
automatically at the request of other broker modules,
while others will be performed at the request of the
human administrator who oversees the cloud operations.

The actual modification of lookup services requires
m

meta

 in Section 4.3, by default Jini uses
multicast communication to implement the discovery
prot

 lookup service, which is a lookup service of lookup
services. As shown in Figure 3, the meta lookup service
provides the link between the broker modules and the
various lookup services in the cloud. It is required to
replace multicast communication with the safer unicast
communication.

As discussed

ocol; in this case, there are frequent announcement
messages broadcast to the network describing the
location and function of the message’s sender. By
monitoring these broadcasts, the broker could determine
the locations of the available lookup services. However,
the decision to use unicast communication for security
purposes means that no such announcements are made,
yet the broker still must know the locations of all of the

lookup services. In fact, unicast means that the broker
can communicate only with lookup services whose
addresses are known. The solution is to create the meta
lookup service at a known location once the broker has
been initialized. All lookup services in the cloud must
then register themselves with the meta lookup service.
Once the lookup services are registered with the meta
lookup service, the broker can use the meta lookup
service to access the regular lookup services.

Finally, the data recovery module is called as soon

as ookup service becomes unavailable. For fault
tole

ess is the means by which an entity
cloud. It can be divided into the

follo

ication module of the broker.

tion and

•
ule.

rns an entry ticket

a l
rance, at least two copies of each lookup service are

maintained, and the duplicate copies are used to recover
from a lookup service failure. The required recovery
data is first transferred from the backup lookup service
to the broker. Next, the resource manager is called to re-
build the crashed lookup service while it concurrently
brings the backup online as the primary lookup service.
As the data is recovered and a backup lookup service
rebuilt, the broker informs the consumer GLAs of the
new lookup service. Alternatively, if available system
memory is limited, data recovery can occur through the
use of maintained log files and Jini lookup service
snapshots (Li 2000). Snapshots are occasional
recordings of the entire system state that are saved to
disk. In the case of a system crash, the snapshots are
reloaded by the system and the state of the system at the
time of the last snapshot is restored. Because only a
single set of lookup services is maintained in this
method of data recovery, the cloud requires less memory
space on the network. However, two main shortcomings
exist to this method: the cloud is unavailable while the
system reloads the snapshots, and any changes in the
system between the last snapshot and the crash are
permanently lost. With either method of data recovery,
new service registrations and queries may be temporarily
blocked to ensure data consistency, but all the services
can still be read.

5.2 Join Process

The join proc
nitially joins the i

wing steps:
• An entity’s GLA sends a join request to the

commun
• The communication module calls the access

control module to perform authentica
authorization of the GLA, depending on the
cloud's security level.
The access control module returns the result to
the communication mod

• If the registration is accepted, the broker’s
communication module retu
to the entity’s GLA. Otherwise, an error
message is returned to the GLA.

Once a GLA has received its entry ticket, it is said
to have joined the cloud. It is then able to participate as
a cloud member by presenting its entry ticket in all
subsequent cloud communications.

5.3. Lookup Process

Once a GLA has joined the cloud, it can register
services (if a producer GLA) or submit queries (if a
consumer GLA) after first presenting its entry ticket
which verifies it is an approved cloud participant. From
the perspective of the broker, the procedures for
registering services and submitting queries look very
similar. As discussed in Section 4.2, a producer GLA
must know the group(s) it wishes to support and a
consumer GLA must determine the group(s) it would
like to search for potential matches. This determination
occurs before the GLA contacts the broker. Once
determined, the specified set of groups is sent to the
broker in order to receive all lookup services supporting
these groups. This process can be divided into the
following steps:

• The entity’s GLA requests from the broker’s
communication module, a list of lookup
services that support its groups of interest.

• The communication module verifies the entry
ticket supplied by the GLA with its request.

• The communication module calls the resource
manager module, passing the desired group(s).

• The resource manager gives the list of groups to
the meta lookup service to receive the desired
lookup services’ addresses and ports.

• The broker returns the IP addresses and ports to
the entity’s GLA.

With these addresses in hand, a producer GLA can
register its service with the lookup services returned. A
consumer GLA will then perform a first-level lookup
with the lookup services to find producers registered in
its particular group(s) of interest. It will then require a
second-level lookup to determine the best service for its
needs. This process, described in Section 4.2, will rank
all the services returned to the GLA. Following the
second-level lookup, the consumer GLA can connect to
the highest-ranked service’s GLA to resolve the query.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design of the secure
ABELS brokering system. The brokering system
manages the resources in the cloud, storing and
maintaining a dynamic set of descriptions and references
to the entities currently participating. The brokering
system matches data producers to consumers while
restricting cloud users to those that are authorized. A
flexible security framework has been designed so that
the system can be adapted to multiple deployment
scenarios. In conjunction with the GLA, the broker
provides an effective, two-level security framework for
the ABELS system.

 Currently, we are continuing the implementation of
the design presented in this paper. We are also in the
process of developing a graphical user interface (GUI) to
aid the cloud administrator in creating and managing the
broker. Future work will include the implementation of
ABELS-specific lookup services and the development of
improved load balancing algorithms. We also plan to
add mechanisms to gather and utilize various system
statistics, and provide email notifications for user-
specified events of interest.

ACKNOWLEDGMENTS

This work is supported by National Science
Foundation KDI Grant 9873138 and U.S. Army Corps
of Engineers contract DACA42-01-P-0288.

REFERENCES

Curbera, F.; M. Duftler; R. Khalaf; W. Nagy; N. Mukhi; S.

Weerawarana. 2002. “Unraveling the Web Services Web:
an Introduction to SOAP, WSDL, and UDDI.” IEEE
Internet Computing 6, No.2 (Mar./Apr.), 86-93.

Dahmann, J.; F. Kuhl; and R. Weatherly. 1998. “Standards for
Simulation: As Simple as Possible but Not Simpler, the
High Level Architecture for Simulation.” Simulation 71,
No. 6 (Dec.), 378-387.

Kumar, A.; L. F. Wilson; T. B. Stephens; and J. T.
Sucharitaves. 2002. “The ABELS Brokering System”. In
Proceedings of the 35th Annual Simulation Symposium
(San Diego, CA, April 14-18). IEEE, Picataway, N.J.,
63-71.

Kumaran, S. I. 2002. Jini Technology: An Overview. Prentice-
Hall, Upper Saddle River, N.J.

Li, S. 2000. Professional Jini. Wrox Press Ltd, Birmingham,
U.K.

Mills-Tettey, G. A. and L. F. Wilson. 2003a. “Security Issues
in the ABELS System for Linking Distributed
Simulations”. Proceedings of the 36th Annual Simulation
Symposium (Orlando, FL, Mar. 30 – Apr. 2). IEEE,
Picataway, N.J., 135-144.

Mills-Tettey, G. A. and L. F. Wilson. 2003b. “A Security
Framework for the Agent-Based Environment for Linking
Simulations (ABELS).” Simulation, to appear.

Peteet, J. O.; J. P. Murphy; and L. F. Wilson. 2003.
"Matchmaking in the ABELS System for Linking
Distributed Simulations". Proceedings of the 15th
European Simulation Symposium (Delft, The Netherlands,
Oct. 26 – 29), SCS, San Diego, CA, to appear.

Wilson, L. F.; D. J. Burroughs; A. Kumar; and J. Sucharitaves.
2001. “A Framework for Linking Distributed Simulations
Using Software Agents.” Proceedings of the IEEE 89, no.
2 (Feb.), 186-200.

Wilson, L. F.; B. Xie; J. M. Kimpel; G. A. Mills-Tettey; and
G. Johnston. 2002. “The Design of the Distributed
ABELS Brokering System”. Proceedings of the Sixth

IEEE International Workshop on Distributed Simulation
and Real-Time Applications (DS-RT) (Fort Worth, TX,
Oct. 11-13). IEEE, Picataway, N.J., 151-158.

AUTHOR BIOGRAPHIES

LINDA F. WILSON is an associate professor at
Dartmouth’s Thayer School of Engineering. She
received her BS degree in mathematics from Duke
University in 1988 and her MSE and PhD degrees in
electrical and computer engineering from the University
of Texas at Austin in 1990 and 1994, respectively. Her
email address is Linda.F.Wilson@dartmouth.edu
and her web page can be found at http://
thayer.dartmouth.edu/~lwilson.

W. RILEY LOCHRIDGE is a master’s student at
Dartmouth’s Thayer School of Engineering. He
received his AB degree in history and engineering
modified with computer science from Dartmouth
College in 2002. His email address is
Riley.Lochridge@dartmouth.edu.

G. AYORKOR MILLS-TETTEY is currently working
in her native country of Ghana. She received her AB
degree in computer science in 2001 and her BE and MS
degrees in engineering in 2003, all from Dartmouth
College. Her email address is Ayorkor.Mills-
Tettey@alum.dartmouth.org.

mailto:Riley.Lochridge@dartmouth.edu

	KEYWORDS
	ABSTRACT
	ACKNOWLEDGMENTS
	REFERENCES

	c0: Proceedings 15th European Simulation SymposiumAlexander Verbraeck, Vlatka Hlupic (Eds.)(c) SCS European Council / SCS Europe BVBA, 2003ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

