
A TOP-DOWN APPROACH TO MODEL INTEROPERATION PROVISION IN
COTS SIMULATION PACKAGES

Michael D. Ryde

Simon J. E. Taylor
Centre for Applied Simulation Modelling

Department of Information Systems and Computing
Brunel University, Uxbridge, UB8 3PH. UNITED KINGDOM

ABSTRACT

This paper examines current methods for model
interoperation when using COTS (Commercial Off-The
Shelf) simulation packages. The viewpoint taken for this
work is from that of the simulation engineer. By
applying distributed simulation theory an attempt is
made to suggest how an example COTS simulation
package could be modified to provide the necessary
functions and interoperability required. Further, by
studying current methods employed, which enable
COTS simulation packages to interoperate, this paper
will discuss the tools currently used, examine their
appropriateness and suggest further areas of research.

INTRODUCTION

The interoperation of simulation models through
distributed simulation has provided many areas for
academic research. Much of this research has been
focused on the technological challenges faced by
software engineers who have strived to determine the
most efficient and accurate way of enabling simulation
models to communicate. The technological problems
have included (amongst others) Web and Network
based simulations, see Miller et al. 2001, model and
object reuse, see Pidd 2002, model synchronization, see
Fujimoto 1990 and 1999 and the technical implications
of using distributed simulation in a specific application
area, for two examples from many, see Zeigler et al.
1999, Carothers et al. 1994.

 A major contribution made by the distributed
simulation field of research is the High Level
Architecture (HLA). The standard (IEEE 1516)
provides a framework for distributed simulation. Each
model, or federate, interacts with each other
(interoperates) to accomplish the simulation exercise
and the combined set of interoperating federates is
referred to as a federation. The HLA gives standards for
data representation (needed so that the communicating
federates can “talk” the same language – the format of
data exchanged between models) and middleware (to
allow communicating parties to “talk” – this is the
federate interface specification, the implementation of
which is called a run time infrastructure, RTI).

 Distributed simulation enabled by the HLA has been
used extensively in military systems (see previous

Winter Simulation Conferences and SISO’s Simulation
Interoperability Workshops for many examples). There
have been relatively few examples of this in industry.
This is not for the lack of opportunity. See Strassburger
2001 for an in-depth discussion on how the HLA could
be used outside of the defence arena. Another use of the
HLA outside the defence arena was put forward as part
of the Intelligent Manufacturing Systems (IMS) mission
project. See McLean and Riddick 2000. Interestingly, an
observation made during this research was that the
current RTIs (developed by different sources) did not
interoperate with each other thus all models in a
distributed simulation would need to use the same RTI.

 Another RTI based development includes GRIDS,
which provides a generic run-time infrastructure for the
execution of distributed simulations. GRIDS provides
basic simulation services to connect simulation models
(federates) cooperating to perform a distributed
simulation (federation), and extensible simulation
services to provide performance enhancement, time-
management, mobile entities, as required. Sudra et al.
2000.

 This paper however, is primarily concerned with
Commercial-Off-The-Shelf simulation applications and
takes a top-down approach to the same issues mentioned
above. We attempt to show how the nature of a COTS
Simulation package can be changed through the
provision of interoperational features. This approach is
taken with the firm belief that simulationalists will use
the tools at their disposal and currently, in many COTS
simulation applications, model interoperation
functionality either does not exist or requires software
development knowledge to use. Arguably, this could be
given as a significant reason for the low up-take and use
of distributed simulation in commercial sectors.

 This paper is divided into 5 sections. Following the
introduction in section 1, Section 2 is concerned with
the current definition of the COTS simulation package
and highlights the typical attributes found in these
packages. Section 3 examines how interoperation may
be achieved using current packages and suggests
potential pitfalls. Section 4 suggests possible
enhancements that could be adopted by the software
development houses to enable model interoperation.
Finally, section 5 concludes and suggests further areas
for research in this field.

COTS SIMULATION PACKAGES THE INTEROPERATION OF COTS
SIMULATION PACKAGES

A typical COTS simulation package, for the purposes of
this paper, is considered an application in which
simulation models can be constructed, saved and reused.
The model would normally be constructed from objects,
some of which would be standardized between models.
Further, it is also expected that the package would have
some form of representation for entities (items of work)
that would be used within the model. Typically, these
packages would include definitions for entity
distributions and methods by which various objects
within the model could be linked or ordered. COTS
simulation packages can be, and often are, used by
various sized organizations but are easily accessible to
even the smallest of businesses because of their low
cost. Thus the diversity of model that the packages are
expected to deal with is fairly broad.

Currently, there are no known products that have the
ability to support and natively allow, multiple models to
interoperate without at-least the use of some basic
middleware component. See figure 1. However, there
are methods used to emulate the interoperation of
models.

Computer A Computer B

Model BModel A

Figure 1: Native Model Interoperation

 Usually simulation models require, as a minimum,
input in the form of a distribution of entities. The entity
distribution for a model could be taken from existing
models by executing a number of experimental runs to
determine the required spread and frequency. This
information could then be passed directly into a model
via a spreadsheet, see figure 2. Many COTS simulation
packages provide functionality to write out to and read
variables from a spreadsheet package in order to provide
a way of passing information between models. In many
cases this provides little more than the passing of
information sequentially from one model to another.

 Many COTS simulation packages have a Visual
Interactive Modeling (VIM) interface, use event lists
and have defined entities. In addition, these packages
are accessible to many organizations due to their costing
structures and as with many ‘volume’ packages are
available on the Microsoft Windows platform. VIM
interfaces provide a method of control to functions
available to the user. Also, these types of interface often
support a ‘drag and drop’ style of interaction making
simulation model building a rapid process.

 A brief review carried out during March 2003
revealed the following (although not exhaustive) list of
COTS simulation applications:

Model A Model B

Spreadsheet
storing

simulation
variables

1. ARENA (Rockwell Software)
2. AUTOMOD (Brooks Automation AutoSimulations

Division)
3. Awe Sim (Frontstep, Inc.)
4. EXTEND (Imagine That, Inc.)
5. GPSS for Windows (Minuteman Software)
6. GPSS/H/Proof Animation/SLX (Wolverine

Software Corporation)
7. iGraphx Process 2000 (Micrografx, Inc.) Figure 2: Simple Model Interoperation using a

Spreadsheet package 8. microGPSS/webGPSS (Ingolf Stahl)
9. ProModel (Production Modelling Corporation)
10. QUEST (DELMIA Corporation) To apply the same method to many models passing

information (entities) to one another, one must consider
the synchronization if causality issues are to be avoided.
It is likely that if multiple models were running and
passing information to each other, then these models
could be running at different speeds; i.e. the simulation
clocks could be different. Thus in figure 3, Model A,
when receiving an event from Model B and Model C,
would need to determine which event to process first.
Using a spreadsheet package to facilitate the passing of
entities may provide some limited mechanism for
reading/writing time-stamped information, event list
information and even synchronization logic (time-
management). However it is suggested that a
spreadsheet, using basic functions would be grossly

11. SIGMA (Custom Simulation)
12. SIMPROCESS/SIMSCRIPT II.5 (CACI Products

Company)
13. SIMUL8 (SIMUL8 Corporation)
14. Taylor Enterprise Dynamics (F & H Simulations)
15. Visual Simulation Environment (Orca Computer,

Inc.)
16. WITNESS (Lanner Group, Inc.)

inadequate and such a mechanism would require some
further middleware logic (program instructions) to give
the required functionality. It can then be argued that the
spreadsheet package is no longer acting as a simple data
passing mechanism, more as a fully-fledged time-
management component. Is a spreadsheet package
really the best tool for the job in this case?

 It has long been suggested that the distribution and
interoperation of simulation models can be achieved
through the use of a ‘Spreadsheet’ some evidence of this
can be found in Clarke 1993. This we term as the
‘Spreadsheet Approach’, which, it is postulated, is
inappropriate for all but the simplest interoperations.

 As suggested earlier, it can be seen that using this
method for distributed simulation cannot work without
some layer of intermediate code to deal with the time-
management functionality. It could therefore be
assumed that programming skills would also be required
by the simulation engineer in order to create this
middleware.

Model A Model B

Spreadsheet
storing

simulation
variables

Model C

Model D

Figure 3: Complex Model Interoperation

 The following is an attempt to build an initial set of
requirements for the interoperation of simulation models
using COTS packages:

• To be able to link objects in different models and

use their output as entity distributions or actual
‘parcels’ of data where required. This provides the
core functionality for the linking of models by
connecting defined simulation objects, which
generate simulation events and output entities.

• The facility to pass entity data between objects in
disparate models. This will define the mechanisms
to pass actual simulation data between the models

and would involve the standardisation of entities
throughout the entire distributed simulation model.

• The provision of access to control the starting and
stopping of a model externally. This is essential so
that models can be started and terminated in a
synchronized manner.

• The implementation of time-management
algorithms for model synchronization. Possibly the
provisions of different synchronization algorithms
could be provided so that the appropriate type of
synchronization could be used for particular
simulation problems.

• The ability to interrogate the event list in order to
examine the next event before it is executed. This is
required to facilitate the implementation of time
management functionality, specifically look-ahead
as used in the Conservative synchronization
algorithms.

• Separate control for re-running C-Phase of
operation as specified in the three-phase simulation
methodology, see Brooks and Robinson 2001.
Again, this would be required specifically for
synchronisation algorithms.

SUGGESTED ENHANCEMENTS TO A COTS
SIMULATION PACKAGE

It is believed that due to the way many COTS
Simulation packages are designed adding
interoperability could be relatively straightforward. For
the purposes of this paper we restrict ourselves to one
package, SIMUL8 (SIMUL8 Corporation). This
package has a VIM interface and uses event lists with
defined entities. SIMUL8 is an accessible package for
many organizations due to its costing structure and is
available on the Microsoft Windows platform. The VIM
provides a high level of control to many of the technical
features and functions available to the simulation
engineer and the package is believed to be an
appropriate candidate for our suggested enhancements.
An attempt has been made to suggest new or modified
functions and even a possible user interface, using
SIMUL8 as an example.

 We have also decided for the purposes of this case
study not to address heterogeneous COTS simulation
package interoperability.

Functions

Table 1 gives examples of functions that could be made
available in COTS simulation packages such as
SIMUL8. The authors of this paper have no knowledge
of the internal mechanisms or software design that
SIMUL8 uses and so these functions serve merely as
general software design suggestions.

 At the current time the main body of work has focused
on run control and entity exchange. The functions
suggested would allow a model to use external objects
and variables and also enable the model to share it’s

SIMUL8 Application Programming Interfaces own objects and variables. Further, the distribution of an
‘input’ could be defined as an external function,
providing an alternate method of distribution. A final
function is provided to enable a selected model to
become ‘the master’ for ease of control and
synchronization of the ‘Global Model’ or ‘Federation’.

 The functions in Table 1 serve merely as example
functions, which could exist within an API (Application
Program Interface), but are not intended to represent a
complete list. However, they do serve to highlight some
important mechanisms, which are required to provide
external control and entity exchange within the COTS
simulation package.

Table 1: Run control and entity exchange functions

Function Description
Handle ExternObj(Object) Externalisation of

objects for external
access. Returns handle
to object.

Handle Extern(Variable) Externalisation of
variables for external
access. Returns handle
to variable.

SetMaster(Boolean) Set Master Model -
Allows a specific
model to be set as a
master to stop and
start the entire
simulation.

Entity GetExternDist(Model,
FromObject, ToObject)

Get external
distribution - Modify
existing routine to
interrogate objects
within separate
SIMUL8 models for
distribution patterns.
Returns Entity.

Boolean LinkExternal(Model
A, Object, Model B, Object)

Links object in model
A to an external object
in model B. Returns
True if successful.

Although strictly not relevant to the simulation
engineers (due to the requirement of software
development skill), the application programming
interfaces (API’s) provide the first steps towards
interoperability. Once the necessary native functions
have been introduced to the application, it is not
unreasonable to expect separate organisations and even
users with software development experience, to develop
standardized middleware to be used by general
simulation engineers (to allow model interoperability).
Currently SIMUL8 supports API’s at a number of
different levels, i.e. OLE Automation, COM and
through the ActiveX interface. There are also some
direct linking facilities, using the user interface, which
can enable the user to link to Microsoft Excel or Visual
Basic (although these probably use the facilities
provided in the API).

SIMUL8 Interface Suggestions

Modifications to the SIMUL8 interface will be required
to enable the Simulation Engineer to design
interoperating models. Below are suggested interface
enhancements to provide access to the interoperability
functionality, primarily focusing on model selection,
object linking and setting the master control.

Selecting External Models

The current object linking box in SIMUL8 version 9
provides a mechanism to link various objects within the
same simulation, see figure 4. Figure 5 suggests a
modification to this dialog box to allow links to be made
to external objects by first selecting the model in which
the object resides.

 SIMUL8 supports the notion of Plugins, which enable
specific software modules to be integrated in to the
package. A possible use for this could be for time-
management algorithms. This could allow different
synchronization protocols to be used when models have
been distributed. The Plugins could include
Conservative (lookahead, lookback and null message
protocols) and Optimistic (Time Warp) algorithms. The
integration detail is expected to be more complex for
these software components; however, the mechanism
could provide a neat and elegant solution to the
problem.

Figure 4: Current Object Linking Dialog

Figure 5: Modified Object Linking Dialog

Linking external objects

Once a model has been selected, external objects could
then be used for specific distributions. Alternatively, an
externalised variable from the model such as a
published ‘results’ variable could be used to provide the
input. Figure 6 shows an example of the dialog boxes to
enable external distribution selection.

 The main purpose of creating external distributions is
to replace the commonly used stochastic distributions
and provide ‘real’ input in the form of entity
occurrences (as opposed to a statistically derived
distribution). The input captured from interoperating
models could then be used to define, after a number of
experimentations, a distribution, which could be used
within a single model. Further implementation could be
considered to integrate the process with the ‘optimisers’,
which are often provided in COTS simulation packages.
This could provide a mechanism by which experiments
could be automated from which a set of distributions
could be derived from interoperating models.

Figure 7: Modified Clock Menu

CONCLUSIONS AND SUGGESTED AREAS FOR
FURTHER RESEARCH

COTS simulation packages tend to be designed for use
on a single disparate simulation model. This paper has
pointed to some areas, which could be addressed to
provide further integration of interoperability (i.e.
distributed simulation) functionality.

 The two key areas discussed are functionality and
interface design. Of-course many packages include
functionality for the reading and writing of variable data
to a specified application, such as a spreadsheet
package. Some packages like SIMUL8 also include the
facility to pass data directly into a program developed
by the simulation engineer Functionality is being
addressed already, in packages like SIMUL8, where an
API is currently in development to facilitate model
interoperation. However, the level of integration
required to enable any reasonable amount of distributed
theory integration, such as synchronisation, still requires
much work on the behalf of the software companies.

 Although some development is underway on the
functionality of individual COTS simulation packages,
further research is required to determine how model
interoperation can be standardised between
heterogeneous packages. Even once this standardisation
work has taken place a body of research, in parallel,
could well be required to investigate the tools and
methodologies required by the simulation engineer to
aid the development of large models within a team. This
has been eluded to in more recent years, see Hibino et
al. 2002. Concurrent development of a simulation model
would require a tool set and methodologies similar to
that used by software engineers. i.e. source code control
(or model control) and version control. Further, the
paradigm could be extended to include specific
development tools for the simulation modeller, for
example, determining the best partition points within a
simulation – this could be calculated through
experimentation, possibly an extension to the simulation
optimising tools currently available. It also believed that

Figure 6: Modified External Distribution Dialog

Setting Model to be the Master

The modified user interface shown in figure 7 reveals an
additional menu option to set the current model to be the
master controller for all linked models. This
functionality could provide ‘central’ control for all
interoperating models, such as synchronized start and
stop.

the paradigm could be extended to include specific
methodologies and practices for use in large model
development, in much the same way that project
management and systems management methodologies
are used in large IT developments (such as PRINCE or
SSADM). Extensions to existing software development
tools could also be investigated, such as UML (the
Unified Modelling Language), to include a standardised
set of development stages and model definition.

AUTHOR BIOGRAPHIES

MICHAEL D. RYDE is a Ph.D. student at the
Department of Information Systems and Computing,
Brunel University in the United Kingdom. He also
received his M.Sc. at Brunel University in 2000 and is a
member of the university’s Centre for Applied
Simulation Modelling (CASM).

SIMON J.E. TAYLOR is the Chair of the Simulation
Study Group of the UK Operational Research Society
and the collaborative simulation-modelling forum, the
GROUPSIM Network (www.groupsim.com). He is a
Senior Lecturer in the Department of Information
Systems and Computing and is a member of the Centre
for Applied Simulation Modelling, both at Brunel
University, UK. With Dr Gary Tan of the School of
Computing, National University of Singapore he is joint
leader of the UK (EPSRC)/Singapore (DSTR)-funded
BRUNUSIM distributed simulation research
programme. He has an undergraduate degree in
Industrial Studies (Sheffield Hallam), a M.Sc. in
Computing Studies (Sheffield Hallam) and a Ph.D. in
Parallel and Distributed Simulation (Leeds
Metropolitan). His main research interest is
collaborative simulation modelling. He is also a member
of the London-based Purple Theatre Company.

REFERENCES
Boer, C.A. and Verbraeck, A. 2002. Connecting High level

Distributed Simulation Architectures: An Approach for a
FAMAS-HLA Bridge. In Proceedings of the 14th
European Simulation Symposium. . Society for Computer
Simulation Publishing House, Erlangen, Germany. 398–
405.

Brooks, R.J. and Robinson, S. 2001. Simulation. Palgrave,
Hampshire, UK 32-35.

Carothers, C.D., Fujimoto R. M., Lin, Y., and England P.
1994. Distributed simulation of large-scale PCS networks.
MASCOTS 1994.

Clarke, R. 1993. Module interconnection frameworks for a
real-time spreadsheet. Computer Abstracts International
Database, reference: 39_1890.

Fujimoto R.M. 1990. Discreet event simulation;
Communications of the ACM. Vol. 33, No 10.

Fujimoto R.M. 1999. Parallel and distributed simulation; In
Proceedings of the 1999 Winter Simulation Conference, P.
A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W.
Evans, eds: 122-131.

McLean, C. and Riddick, F. 2000. The IMS Mission
Architecture for Distributed Manufacturing Simulation. In
Proceedings of the 2000 Winter Simulation Conference, J.

A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.
Association for Computing Machinery Press, New York,
NY. 1539-1548.

Miller J, Fishwick P.A., Taylor S.J.E., Benjamin, B. and
Szymanski, B. 2001. Research and Commercial
Opportunities in Web-Based Simulation. Simulation:
Practice and Theory. 9(1-2), pp. 55-72.

Pidd M., 2002. Simulation Software and Model Reuse: A
Polemic. Proceedings of the 2002 Winter Simulation
Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and
J. M. Charnes, eds. Association for Computing Machinery
Press, New York, NY. 772-775.

Strassburger, S. 2001. Distributed Simulation Based on the
High Level Architecture in Civilian Application Domains.
Society for Computer Simulation Publishing House,
Erlangen, Germany.

Sudra, R., Taylor, S. J. E. and Tharumasegaram, J. 2000.
Distributed Supply Chain Simulation in GRIDS. In
Proceedings of the 2000 Winter Simulation Conference, J.
A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.
Association for Computing Machinery Press, New York,
NY. 356-361.

Taylor, S. J. E., Bruzzone, A., Fujimoto, R., Boon Ping Gan,
Straßburger, S. and Paul, R.J. 2002. Distributed
Simulation and Industry: Potentials and Pitfalls.
Proceedings of the 2002 Winter Simulation Conference,
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, eds. Association for Computing Machinery
Press, New York, NY. 688-694.

Zeigler B.P., Kim, D. and Buckley, S. J. 1999. Distributed
supply chain simulation in a DEVS/CORBA execution
environment; In Proceedings of the 1999 Winter
Simulation Conference, P. A. Farrington, H. B. Nembhard,
D. T. Sturrock, and G. W. Evans, eds: 1333-1340.

	ABSTRACT
	Functions
	SIMUL8 Application Programming Interfaces
	SIMUL8 Interface Suggestions
	Selecting External Models
	Linking external objects
	Setting Model to be the Master
	REFERENCES

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

