DISTRIBUTED, OPEN SIMULATION MODEL DEVELOPMENT WITH DSOL SERVICES

Niels A. Lang
Erasmus University Rotterdam
Rotterdam School of Management
Dep. of Decision & Information Sciences
Burg. Oudlaan 50, 3000 DR Rotterdam, NL
nlang@fbk.eur.nl

KEYWORDS

Distributed simulation, object-orientation, simulation
services, simulation environment.

ABSTRACT

Information technology innovations, like web-services
and object-oriented design, are fast finding their way
into Business Information Systems (BIS). At the same
time similar developments in the field of business sys-
tem simulation do not gain momentum. This obser-
vation, combined with research needs, has been the
starting point for the development of an open, object-
oriented, distributed and extendible research test-bed
for business simulation, called DSOL. DSOL, which
stands for 'Distributed Simulation Object Library’ was
introduced on Wintersim 02 (see Jacobs, Lang and
Verbraeck 2002), and has now evolved into a firm dis-
tributed simulation core, extended with several services
for visualization, event notification and BIS integra-
tion.

This paper illustrates in detail the way in which con-
cepts and principles on discrete-event, multi-formalism
simulation have been translated into the object-
oriented, distributed DSOL environment. It introduces
the simulation concepts underlying the DSOL design,
the DSOL implementation itself, example models and
finally discusses the outcomes.

SIMULATION FOR BUSINESS DESIGN

Recently, several internet web service based architec-
tures have been introduced that promise to streamline
inter- and intra-organizational communications. These
developments allow organizations to integrate their dis-
tributed business systems fast and effective and, as a
result, improve performance of and control over their
business processes.

Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)

(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

Peter H.M. Jacobs and Alexander Verbraeck
Delft University of Technology
Faculty of Technology, Policy and Management
Systems Engineering Section
Jaffalaan 5, 2628 BX, Delft, the Netherlands

p-h.m.jacobs@tbm.tudelft.nl; a.verbraeck@tbm.tudelft.nl

A corresponding movement towards open, dis-
tributed interaction standards has not yet gained mo-
mentum in the field of simulation. Most simulation
packages have limited and incomplete capabilities for
interaction with other systems, effectively limiting the
potential of linking simulations to other types of infor-
mation systems, such as ERP systems and databases.
Moreover, standards for interoperable simulation sys-
tems are not yet widely accepted, limiting the develop-
ment of multi-model simulation systems.

The Java-based Distributed Simulation Object Li-
brary (DSOL, see Jacobs, Lang and Verbraeck 2002)
was developed to fulfill the need for such an open in-
tegrated platform for business simulation. Section 1
describes the simulation concepts underlying the plat-
form. Section 2 presents its current implementation.
Section 3 presents the M/M/1 queue example. Sec-
tion 4 finally discusses the results achieved thus far.

We regard simulation to be a model-based approach
for ill-structured problem solving (Sol 1982), a model
being a representation of a part of reality, constructed
for a particular purpose. Simulation has been defined
by Shannon (1975) to be:

"The process of designing a model of a concrete system
and conducting experiments with this model in order
to understand the behaviour of a concrete system and
/ or to evaluate various strategies for the operation of
the system.’

We furthermore distinguish between conceptual mod-
els, that provide a problem-contingent language for sys-
tem model design and system models, instantiations of
the conceptual model describing a part of the system
of interest. The system models allow experimentation.
Describing a system model in terms of a conceptual
model eases its description (many system model parts
can be related to a single concept) and allows for the
definition of consistency rules. Such rules constrain
the model designs allowed and therewith ease model

understanding.

While our definition of simulation speaks of the
design of 'a model’;, we follow Simon 1973 in that
ill-structured problems by their very nature require
the development of multiple models. The overall ill-
structured problem solving process does not proceed
in a straightforward manner, but proceeds by alternat-
ing continuously between model development for (cho-
sen) sub-problems and sub-model integration. Changes
may not only occur in system models but also in the
underlying conceptual model, yielding the requirement
for flexible modeling of both.

The simulation approach described thus far could
be applied in many fields. We will in this paper, how-
ever, focus on its appliance in the field of business sys-
tems. Current business systems have three characteris-
tics that we deem relevant for the simulation approach.

First of all, there is little doubt on the complexity
of many current business systems. Business processes
easily involve hundreds of steps, complicated planning
and scheduling decision procedures and thousands of
distributed resources.

Moreover, businesses are globalizing since the dawn
of the 20th century (Acs, Morck and Yeung 2001),
under the drivers of market liberalization and cheap
communication infrastructure. This trend implies that
business design problems essentially has become dis-
tributed in two ways: not only the object of design
(e.g. the business system) has become an inherent dis-
tributed system, the process of design, with typically
involves many stakeholders worldwide, is moving to-
wards distributed collaboration as well.

Finally, the trend of automation and information
drives the wvirtualization of business systems. Busi-
ness process organization and management is more and
more realized in complex ICT systems (such as Enter-
prise Resource Planning (ERP), Supply Chain Man-
agement (SCM) and many others), which allow for
(computationally) complex business processes and of-
fer global business connectivity.

As a result, a simulation environment supporting
simulation for the current business environment should
pay explicit attention towards the aspects of system
complexity, distributed systems and the presence of
virtual business information.

The remainder of the section presents a conceptual
framework for simulation environments which fits the
described peculiarities of business simulation.

Simulation as experimenting

Figure 1 introduces an experimentation oriented frame-
work of the simulation environment, in line with our
definition of simulation. The framework is based on

real world
system

dynamic

> system

A realization
"

selecteth .
output "~
events

initialization
events

.
H
.
v abstraction

system
model

a4
<4»

exper i | I P
<
frame

.

experimenter

Figure 1: Experiment oriented framework for simula-
tion

Experimental Frame

Treatment

observational
frame

initial
state

run
control

Figure 2: The experimental frame defined

Zeigler, Prachofer and Kim (2000) and introduces two
main concepts, that of ’experimental frame’ and ’dy-
namic system’. According to Zeigler, the experimental
frame is a ’“specification of the conditions under which
the system is observed or experimented with’. The sys-
tem being experimented with is basically any dynamic
system, with the experimental frame defining and lim-
iting the scope of the observations with regard to time,
region and aspect. In the context of simulation the
dynamic system is either a concrete system, or a corre-
sponding model. We call an experimenter developing
and experimenting with several models (in order to im-
prove the concrete system’s behaviour) a designer. In
[Verbraeck / Sol] the concept of experimental frame
is defined more precise, by regarding it as a collection
of treatments, where each treatment comprises an ini-
tial state, run control parameters and an observational
frame, see figure 2. Using this definition, it is possible
to define roles other than experimenter or designer. We
define an observer as a participant interacting only via
an observational frame. We finally define a player as
a participant interacting using an observational frame
and an action frame, which allows the player to pro-
vide input to the dynamic system during an experi-
ment. The last role essentially turns the simulation
model into a game model.

With respect to business simulation, we observe that
the framework allows concurrent, distributed collabo-
ration, since no restriction is imposed on the communi-
cation used or the number of participants concurrently

S
X=—p 1

ta(S)

—»> Y

Figure 3: The DEVS model formalism

involved. We finally recall the ’virtualization’ of busi-
ness systems. This basically implies that real world re-
alizations of business ICT systems do already contain
models and data of the business system they support.
In potential such models and data could considerably
speed up the development of a system model of the
business system, if services to convert them into a sim-
ulation model are made available. A typical example of
this would be to retrieve workflow processes and data
from a company’s ERP system and use this as the basis
for a workflow simulation model.

DEVS: a base formalism

We distinguish between simulation model and simula-
tor (Zeigler, Prachofer and Kim 2000), illustrated in
figure 1. Whereas the model defines structure and be-
haviour, the simulator actually brings the model be-
haviour about by ezecuting the model in a time con-
trolled manner. The simulator allows the experimenter
to control speed, start and end times, by discretioniz-
ing the overall behaviour into events, e.g. atomic state-
changes. The separation between model and simulator
raises a need for a contract defining the interaction be-
tween model and simulator. We’ll define a formally
defined contract to be a model formalism. It follows
that a simulator for a given formalism is able to exe-
cute all models specified in that formalism.

In business simulation, many types of models are
used, ranging from complex control systems, to simple
workflow models and to distributed gaming models.
For integrated business analysis, it is often desirable
(but not always feasible!) to integrate such models
of different but related business system aspects. To
ensure the applicability of the DSOL simulation envi-
ronment for these situations, a choice was made for a
base formalism of high expressive power (Zeigler, Prae-
hofer and Kim 2000; Vangheluwe and de Lara 2002):
Discrete Event System Specification (DEVS).

Figure 3 schematically introduces the DEVS con-
cept, which is presented here with an emphasis on illus-
tration, not on rigor. X defines the set of input values,
Y defines the set of output values. The model has a
state S, which is a function of an incoming value and of
the internal transition function. The latest is triggered
by the function ta(S) which defines the time for the
next internal state transition. The model output (Y)

A AR 4

1 S/ 2 \s
4
\

simulator

‘ >| event port (in) P event port (out) ‘

Figure 4: The extended DEVS formalism

is defined to be a function of the model’s state only.
The formalism introduced thus far imposes no con-
straints on the semantics of input, output or state. It
can be extended to encompass specific worldviews like
transaction-flow or actor oriented ones.

Modularity and hierarchy

The DEVS formalism as introduced thus suggests the
model to be a monolithic entity. As such, it is still
of little use to us, since a monolithic model will be as
complex (or worse) as the part of reality being mod-
eled. The DEVS formalism has, however, been ex-
tended with general systems concepts enabling the de-
scription of multi-component, modular and hierarchi-
cal DEVS models. This extended DEVS formalism is
illustrated in figure 4.

It introduces the concept of a multi-component
model connected by event ports. Between event ports,
connections can be attached, allowing components to
interact by the exchange of events. Actual event propa-
gation is facilitated by the DEVS simulator, which is in
this way able to control the speed of inter-component
interaction. The formalism does not impose any re-
strictions on how event interaction is actually realized
thus allowing for distributed implementations.

The possibility to break down the model in several
components eases model development and enhances
understanding. The concept of event ports further-
more allows for modularity, e.g. components managing
a self-contained, not externally visible state. By re-
stricting component interaction only to take place via
event connections, components in effect become mod-
ules, with event ports defining their interfaces. In such
a setting the direct interaction (bypassing event con-
nections) shown in figure 4 is thus forbidden. The well-
known advantages of modular models is that they allow
for separation of concerns and freedom of implementa-
tion: essential qualities for complex business system
modeling.

Finally, figure 5 illustrates the suitability of the
DEVS formalism to construct models containing sev-
eral levels of abstraction, e.g. hierarchical models.
Modularity is maintained by restricting internal mod-

12

1.3

| =
=

Figure 5: Hierarchical DEVS

els to connect only to event ports of or internal to the
parent model. The relevance for business system mod-
eling is that business system design occurs at different
levels of abstraction, from individual workplace design
to inter-organizational coordination (Sol 1982).

Towards multi-formalism simulation

The extendability of the DEVS formalism has already
often been demonstrated (Zeigler, Prachofer and Kim
2000; Vangheluwe and de Lara 2002). However, many
simulation packages, although often based on DEVS,
only provide access to a higher level set of concepts,
such as the transaction-flow worldview. Given the al-
ready mentioned business problem diversity the chal-
lenge is to realize an environment which is open to new
formalisms (realizing conceptual freedom). A sound
basic formalism and operators for its extension are
therefore essential conditions. We hold DEVS to be
such a formalism.

SIMULATION WITH DSOL

This paper introduces DSOL: a Java based research
test-bed for simulation in object oriented, distributed
environment. Before we introduce DSOL’s implemen-
tation of the fundamental DEVS concepts, we start
here with an overview of the services provided by the
framework. Currently DSOL consists of:

e A core DEVS simulator introduced throughout the
rest of this section. From a perspective of infor-
mation system design, this simulator is set up as
a remotely accessible service. It fully supports all
current enterprise information system standards.

e A basic statistics library consisting of a num-
ber of pseudo random number generators, tallies,
charts, counters, etc (see Law & Kelton 2000).
Planned extensions include dynamic input analyz-
ers, monte carlo analysis and the integration with
data mining suites.

e A 2D visualization and representations described
in Jacobs, Lang and Verbraeck (2002). 3D anima-
tion is currently tested based on Sun’s 3D API.

Remote method invocation scheduling

In the previous section we focused in great detail on the
DEVS formalism and pointed out that this formalism
is based on scheduled interaction. The challenge of the
DSOL framework is to see to what extent an object
oriented programming language like Java supports this
principle of interaction and how it is able to schedule
it in a profound and natural way.

The synergy between an object oriented language
and the DEVS paradigm becomes clear when we con-
sider that both are based on a principle of interac-
tion. In an object oriented programming language, ob-
jects interact by the invocation of methods. An object
oriented programming language furthermore distin-
guishes public, private and protected methods. Where
private methods are only accessible to the object it-
self, protected methods are also accessible to instances
of subclasses (in the Java programming language pro-
tected methods are also accessible to all classes in the
same package) and public methods are accessible to
everyone.

For us it became clear that the most essential part
of designing a DEVS based simulator was to support
this notion of object oriented interaction; instead of
the direct method invocation which occurs in normal
Java programming, DSOL schedules method invoca-
tion based on the following requirements:

e The scheduled method invocation must map on
the scheduled state change illustrated in figure 3.
A SimFEvent illustrated in figure 6 maps the event
introduced by the DEVS framework.

e All public methods must be able to be scheduled
and invoked by the DSOL simulator. There may
be no constraint on the method name, return type
or any argument.

e Overloading and polymorphism must be sup-
ported. This results in a simulation framework
fully supporting all potential distinctions between
methods.

e Though both the simulator and the object on
which interaction is scheduled may reside within
the same Java virtual machine, DSOL is designed
for distributed interaction. All simulation events
must therefore be serializable.

The modular approach introduced in the first section
encouraged us to accept that potentially better imple-
mentations of the scheduled method invocation may be
developed. DSOL nevertheless provides a reference im-
plementation based on all above requirements (figure

6).

SimEvent

- executionTime : double

- target: Object

- method: SerializableMethod
- arguments : Object[]

+ execute() : void
+ getExecutionTime() : double

realizes

—O

SimEventinterface

+ execute() : void
+ getExecutionTime() : double

Figure 6: Reference implementation of a DSOL simulation event

Process modeling in an object oriented simula-
tion framework

In section 1.2 we elaborated on the complexity of con-
ceptualizing an ill structured real-world business sys-
tem under investigation. We furthermore emphasize
on Banks’ (Banks, 1996) recommendation of involving
the problem owner in this activity. Finally we con-
clude that this often leads to a resource based con-
ceptualization of the real-world business system. This
section focuses on ways to support the translation of
these resource based concepts, e.g. resources, queues
and flows, into a DEVS based specification framework
like DSOL. There are several options to accomplish this
translation:

The first option discussed here is the NULL option.
We just do not provide any assistance in the translation
of resource based conceptual models in DEVS based
specification framework. Though Zeigler (2000) proved
that all resource based concepts can fundamentally be
explicated in DEVS concepts, this option leaves it is up
to the designer to make this translation while coding
the specification model.

A second option is to provide a library which enables
the model builder to code the process in the entities of
the specified simulation model. This is an approach fol-
lowed by most Java based simulation frameworks such
as Silk, SSJ, SimJava, etc. The following pseudo code
reflects this approach.

public class Customer extends entity
{
public void process()
{
server.request(1.0);
//request a capacity of 1.0
this.delay(1500); //suspends for t=1500;
server.release(1.0);// resume and release
}
}

Key consequences of this approach in an object ori-
ented programming language are:

e The conceptual model is specified in long procedu-
ral code. For large models, this is in clear contrast
with the required modularity and hierarchy sup-
ported both by the DEVS formalism and the Java
programming language.

e The customer in the above pseudo code must be
able to suspend himself for a particular time. In
order to accomplish this the entity must break
out a method and afterwards resume to the next
line within this method. In an object oriented
programming language this can only be accom-
plished by extending a thread (Healy 1998; Gar-
rido 2001). This multi-threaded approach is in the
Java programming no longer supported and con-
sidered deprecated (Sun 2002). The approach is
inherently unsafe; arbitrary behavior can result,
which may be subtle and difficult to detect, or it
may be pronounced. We therefore state here that
the results of simulation models based on this ap-
proach are fundamentally un-trustworthy.

The third approach presented in this paper is to
design and develop a library for resource based con-
ceptual models. This approach is implemented by
most non object oriented simulation frameworks such
as Arena, EM-Plant, Automod and a few object ori-
ented frameworks such as SimKit and DSOL. In this
approach one designs the model as a chain of stations.
The following pseudo code reflects this approach:

public class SimulationModel
{
public static void main()
{
//create a generator with interarrivaltime of
//1.2 and a batchSize of 1
StationInterface generator =
new Generator (Customer.class,1.2,1);

//create a delay of 1500 time units
StationInterface delay = new Delay(1500);

//create an exit station

StationInterface exit = new Station();
//now we create the flow
generator.setDestination(delay);
delay.setDestination(exit);

}

}

Key consequences of this approach in an object ori-
ented programming language are:

e Since a simulation model is specified by the cre-
ation of a chain of stations , this approach keeps
as close as possible to resource based or process
oriented, e.g. IDEF-0, conceptual modeling lan-
guages.

e Since the model is programmed in the stations it is
easier to replace a station by an extension. Spec-
ifying a model is done in a service oriented ap-
proach supporting both Java’s component based
and DEVS modular and hierarchical design pat-
terns .

e Since incoming entities are scheduled from station
to station there is no need for the suspension of
threads. An entire model may be single threaded
and entities can easily be serialized and streamed
from computer to computer.

DSOL has followed both the first NULL approach
and the third approach. The reason why this pa-
per mentions the first NULL approach is that though
DSOL provides a library of resource based concepts,
they are considered an add-on. The underlying DEVS
framework remains directly accessible.

A-synchronous event model

In order to emphasize the advantages of implementing
a DEVS formalism in an object oriented language this
section illustrates the benefits of using an asynchronous
event mechanism.

The asynchronous event mechanism consists of two
sides: a listening client subscribes to a topic and an
event producing publisher notifies all subscribed listen-
ers on a particular change. The interfaces and reference
implementation are illustrated in figure 7.

In figure 7 a ListenerInterface provides a method on
which a callback is made possible and the EventPro-
ducer consists of a private List containing all subscrip-
tions. A subscription consist of a listener and a topic.
Whenever a producer invokes a fireEvent method, all
listeners are one by one matched on the topic and if
required notified.

Though the above elaboration on an asynchronous
event mechanism might sound all too familiar to ex-
perienced Java programmers, it is good to understand
and emphasize on its consequences:

e An asynchronous event notification mechanism
supports point-to-multipoint interaction between
model components and distributed (web-based)
representation components.

e An asynchronous event notification mechanism
supports dynamic soft coded relations between de-
ployed (web) services.

EXAMPLE: AN M/M/1 QUEUE

This section derscribes how to implement the tradi-
tional M/M/1 queue: a convenient example to illus-
trate DSOL. It is furthermore used as an example by
L’Ecuyer [L’Ecuyer, 2002] to illustrate SSJ. Since the
SSJ framework is a multi threaded process oriented
simulation framework, the combination of papers illus-
trates the difference of specifying the resource based
conceptual model in entities versus stations.

In the M/M/1 queue, the service time follows a nor-
mal distribution with u=0.8 and 0=0.1. The system
starts empty and has a runlength of one million time
units. Entities are created with a batchsize=1 and an
interarrival time following an exponential distribution
with 5=1.0.

Figure 8 illustrates the code for this system. First
of all we see the creation of a simulator. The next
step is to set the runlength of this particular simulator.
Then we create a random stream to be used within
the application. For this particular example we have
used the Mersenne Twister random stream developed
by Makoto Matsumoto [Matsumoto, 1998].

The first resource based building block used within
figure 8 is the generator. The generator creates in-
stances of a class by the scheduled invocation of its
appropriate constructor. In order to deal with con-
structor overloading we submit besides the name of
the class, the array of arguments for the constructor
and the array of classes of which these arguments are
instances. We also provide distributions describing a
start time, an interarrival time and a batchsize. The
fact that we generate instances of the java.lang. Object
class emphasizes that there are no restrictions within
the DSOL framework to the postponed invocation of
methods or constructors.

The next steps are very straitforward. First we cre-
ate a resouce with a capacity of 1.0. Then we create a
seize block which claims 1.0 unit of the resource. After
the resource is succesfully claimed, the entity will flow
to the server which will delay the entity for around 0.8

EventProducer

- listeners : List

- fireEvent(Object topic, Object value) : void
+ subscribe(Object topic,Listenerlnterface listener) : void
+ unsubscribe(Object topic,Listenerinterface listener) : void

Listenerlnterface

—O

EventProducerinterface

—0

+ notify(Event event) : void

+ subscribe(Object topic,Listenerlnterface listener) : void
+ unsubscribe(Object topic, Listenerinterface listener) : void

Figure 7: Reference implementation of DSOL’s asynchronous messaging

time units and release the resource. Finally we initial-
ize and start the simulator.

DISCUSSION AND CONCLUSIONS

This paper started with the need for an interaction be-
tween simulations and business systems. The problem
with this integration is of course that these two worlds
differ very much. Where simulations abstract and re-
duce reality, business systems try to fully capture that
reality. The simulation clock runs faster than reality,
but the business system has no choice but to operate
in real time. On the other hand, there is a clear need
for tight integration, because the most time consum-
ing tasks in simulation studies are the mapping of the
business system on the simulation and the process of
gathering and preparing data for the simulation exper-
iments. By using the asynchronous interfacing mech-
anisms that was introduced in section 2.3, data col-
lection from real-life data sources is much easier than
trying to create a tight interface between business sys-
tems and simulations. In addition, there does not need
to be such a big difference between delayed method
invocation and real method invocation. Architectures
for creating the business systems can therefore also be
used for simulating these systems, where the most im-
portant differences consist of the reduction of certain
processes and the scheduling against artificial time. A
welcome add-on is the possibility to create hybrid sys-
tems where simulation models are a component in a
larger system, e.g. providing decision support func-
tionality. Several projects have already been carried
out where DSOL simulations easily exchange informa-
tion with databases, spreadsheets, and external sys-
tems. Two interesting challenges will be researched in
the near future: directly mapping the architecture of
a business system in reduced form on a simulation ar-
chitecture, and including DSOL simulation models as
modules in decision support systems.

The DSOL framework as introduced offers more than
a possibility for integration, it is also a basic DEVS
simulator with many extensions such as statistics, an-
imation and visualization, and process modelling. In
contrast to many other approaches, though, these ex-
tensions are not tightly coupled to the DSOL core,
but loosely coupled, enabling other implementations
of these additions as well. The heavy use of Java inter-
faces in the implementation ensures that users extend-
ing or creating their own implementation of a certain
functionality, do not have to change pieces of code that
make use of the newly created software. It is, for in-
stance, very easy to change the SimFEvent or EventList
in the core of DSOL for another implementation with-
out making any changes to projects that have already
been built on top of the DSOL core. The fact that
DSOL is an open source project will hopefully stimu-
late specialists to indeed create better or faster imple-
mentations of some of the already implemented func-
tionality of this Java-based simulation framework.

OBTAINING THE SOFTWARE

DSOL is published under the General Public Li-
cence. More information on the license can be
found at http://www.gnu.org/copyleft/gpl.html.
The DSOL project description can be found at
http://www.simulation.tudelft.nl and the soft-
ware can be downloaded from http://sourceforge.
net/projects/dsol/.

public class MM1Queue

{
public static void main(String[] args)
{
if (args.length!=0) System.out.println("Usage: java MM1Queue");
SimulatorInterface simulator = new Simulator();
simulator.setRunLength(1000000) ;
StreamInterface randomStream = new MersenneTwister(555);
//The generator
DistContinuous generatorStartTime = new DistConstant (randomStream,0.0);
DistContinuous arrivalTime = new DistExponential (randomStream,1.0);
DistDiscrete batchSize = new DistDiscreteConstant(randomStream,1);
GeneratorInterface generator = new Generator(simulator,java.lang.Object.class,null,null,
generatorStartTime,arrivalTime,batchSize);
//The queue and server
Resource resource = new Resource(simulator,1.0);
StationInterface queue = new Seize(simulator,resource,1.0);
//The server
DistContinuous serviceTime = new DistNormal (randomStream,0.8,0.1);
StationInterface server = new Delay(simulator,serviceTime) ;
//The flow
generator.setDestination(queue) ;
queue.setDestination(server);
//Starting the model
simulator.initialize();
simulator.start();
}
}

Figure 8: M/M/1 Queue

REFERENCES

Acs J., R.K. Morck and B.Yeung. 2002 En-
trepreneurship, globalization and public policy, in En-
trepreneurship, globalization and public policy, vol.
7 (2001), pages 235 - 251.

Banks J. , J.S. Carson II, B.L. Nelson. 1996 Discrete-
Event System Simulation. 2nd ed., Prentice Hall,
Upper Saddle River, N.J.

L’Ecuyer P., L. Meliani, J. Vaucher. 2002 SSJ: A
framework for stochastic simulation in Java. Con-
ference paper Winter Sim’02 conference.

Garrido J.M., 2001 Object-Oriented Discrete-FEvent
Simulation with Java, Kluwer Academic/Plenum
Publishers, New York.

Healy K.J. and Kilgore R.A.,1998 Introduction to silk
and java-based simulation.

Jacobs P.H.M., N.A. Lang, A. Verbraeck. 2002.
DSOL; A distributed Java based discrete event simu-
lation architecture. Conference paper Winter Sim’02
conference.

Law A.M., W.D. Kelton. 2000. Simulation modeling
and analysis, 3th ed., McGraw-Hill, New York

Matsumoto M., T. Nishimura, Mersenne Twister: A
623-dimensionally equidistributed uniform pseudo-
random number generator, ACM Trans. on Model-
ing and Computer Simulation Vol. 8, No. 1, January
pp.3-30 1998

Shannon R.E.; 1975. Systems simulation: the art and
science, Prentice-Hall

Simon H.A., 1973. The structure of ill-structured prob-
lems in Artificial Intelligence, vol. 4 , pages 181-202

Sol H.G., . 1982. Simulation in information system
development.

Sun Microsystems Inc., 2002 Why Are Thread.stop,
Thread.suspend, Thread.resume and Run-
time.runFinalizersOnExit Deprecated?, http:
//java.sun.com/j2se/1.4.1/docs/guide/misc/
threadPrimitiveDeprecation.html

Vangheluwe H. and J. de Lara, 2002. Meta-models are
models too in Proceedings of the 2002 Winter Sim-
ulation Conference, E. Yiicesan, C.-H. Chen, J.L.
Snowdon and J.M. Charnes, ed., pages 597 - 605.

Zeigler B.P. | H. Praehofer and T.G. Kim. 2000. The-
ory of Modeling and Simulation. Integrating Dis-
crete Bvent and Continuous Complex Dynamic Sys-
tems. 2d ed. San Diego: Academic Press.

AUTHOR BIOGRAPHIES

NIELS A. LANG is a Phd. student at Erasmus Uni-
versity Rotterdam. He researches simulation in logistic
system design, with an emphasis on economic analysis.
His e-mail address is <nlang@fbk.eur.nl>.

PETER H.M. JACOBS is a PhD. student at Delft
University of Technology. His research focuses on the
design of decision support services for the design and
management of a business alliance portfolio. His e-mail
address is <p.h.m. jacobs@tbm.tudelft.nl>.

ALEXANDER VERBRAECK is an associate pro-
fessor in the Systems Engineering Group of the Faculty
of Technology, Policy and Management of Delft Uni-
versity of Technology, and a part-time full professor in
supply chain management at the R.H. Smith School of
Business of the University of Maryland. He is a special-
ist in discrete event simulation for real-time control of
complex transportation systems and for modeling busi-
ness systems. His current research focus is on develop-
ment of open and generic libraries of object oriented
simulation building blocks in Java. Contact informa-
tion: <a.verbraeck@tbm.tudelft.nl>.

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

