
.:PSIM:. – A LABVIEW-BASED SIMULATION SYSTEM
AS A LEARNING AID

Petra Aradi

Department of Informatics, Faculty of Mechanical Engineering
Budapest University of Technology and Economics

Műegyetem rkp. 3., Budapest, H-1111, Hungary
e-mail: petra@rit.bme.hu

KEYWORDS
continuous simulation, education, tool, LabVIEW

ABSTRACT

.:PSim:. a LabVIEW-based simulation system suitable
for both educational and industrial purposes is
presented. Educational aspects of .:PSim:. are
emphasized below, especially in areas of systems and
control engineering as taught in various courses at
Budapest University of Technology and Economics
(BUTE). .:PSim:. is not just another simulation tool in
LabVIEW, it is a set of building blocks like LEGO that
can be combined into various constructions and can
further be extended with new elements.

INTRODUCTION

.:PSim:. started as a collection of LabVIEW VIs
developed by the author for simulating continuous time
processes, according to the CSSL (Continuous System
Simulation Language) recommendations. Later on the
traditional time-domain simulation was extended with
frequency domain methods. After implementing these
“traditional” techniques, soft computing methods,
specifically fuzzy systems and neural networks were
added to handle complex non-linear models or models
based on measured data. Bondgraph models, discrete-
time systems, identification, stability analysis and
compartment models were the latest enhancements in
.:PSim:.
The main goal while developing .:PSim:. was to create
an almost general-purpose simulation tool that is
suitable both for educational and industrial purposes.
.:PSim:. had to retain the characteristics of CSSL whilst
including the emerging techniques like Soft Computing.
As educational applications were the first concern an
easy to use programming environment had to be used
which is suitable both for illustration during lectures and
for student projects as well.

WHY LABVIEW?

LabVIEW from National Instruments was chosen as the
programming environment for .:PSim:. LabVIEW
stands for Laboratory Virtual Instrumentation

Engineering Workbench, and is available in various
computer platforms, such as Linux, MacOS, Windows,
Solaris, HP-Unix. LabVIEW applications are called
virtual instruments or VIs for short. VIs have a user
interface and a block diagram, where the actual program
is built with LabVIEW’s graphical components (Fig. 1).
The ease of use and programming, together with
LabVIEW’s excellent connection to the outside world
through data-acquisition, I/O and network protocols
makes it the ideal tool for scientists and engineers.
LabVIEW has quite a number of front panel elements
that facilitate the quick and easy fabrication of
instrument-like user interfaces, naturally leaving the
opportunity to create customized elements like buttons
and displays. A similarly huge amount of functions –
mathematical, I/O, etc. – are also readily available.

Fig. 1: Front Panel and Diagram Panel in LabVIEW

Years of experience in LabVIEW programming
suggested its use as a quick and easy tool to produce
spectacular and effective simulation programs to
illustrate lectures even on the fly, during a lecture.
Students also seem to be interested in just watching the
birth of a simulation program with the rather advanced
graphical programming capability, they normally do not
learn to use. Even using LabVIEW’s built-in
functionality without any add-ons impresses them,
especially when the computer is connected to a real
world system, either just to measure it or even to control
it.
According to the author’s observations students with no
previous experience in programming – not even text-
oriented languages – could grasp the basics of
algorithmic thinking and programming structures after
four or five lectures followed by practice at a computer.
Afterwards they are capable of solving simple
programming and – what is more important – simulation
problems with LabVIEW. They really enjoy the power
of being able to tell the computer what to do, how to
help them solve their tasks.
This explains why LabVIEW was chosen.

.:PSIM:. FOR LABVIEW

Numerical Integration

As mentioned above, .:PSim:. started as a CSSL
implementation in LabVIEW with the characteristic
blocks of the digital implementation of an analog
computer. The most important of these blocks are
integrators with four numerical integration methods
implemented. It is of course possible to use other
formulas as well, however it was so far unnecessary to
use higher than second order integrators (e.g. Adams-
Basforth) in educational applications. Numerical
integration can be accomplished with fixed time-step or
with variable time-step. To be in synch with the
mathematical knowledge of undergraduate students
fixed time-step methods are used in educational
applications.

Beyond CSSL

It very soon became evident, that systems and control
engineering courses are yearning for more powerful
simulation methods than block oriented simulation with
CSSL elements. That is why state space models and
basic transfer blocks like proportional, integrator, lead-
lag, PID, etc. were also implemented as sub-VIs.
Adding these sub-VIs to the block diagram of a
LabVIEW program rather complex systems may be
built. It is possible to combine all the above mentioned
system models within the same application.
As stability is an existential issue in the analysis of
dynamic systems, various stability criteria (like Routh’s
table and Hurwitz’s determinant) are also included in
.:PSim:.

Furthermore, as frequency domain methods still have
their significance in system analysis, such tools like
Bode and Nyquist diagrams were also implemented. As
the classical control theory states rather simple
approximate schemes to connect frequency and time
domain properties to establish the quality of control
loops, methods like the Nyquist stability criterions were
implemented accordingly.
Mostly, but not exclusively complex system models
require the use of logical (Boolean) and non-linear
functions (e.g. hysteresis, relay).
Digital controllers can also be modeled with the use of
the discrete-time VIs.
Additional blocks are fuzzy rule-based systems that can
be used as controllers, neural networks that can be
trained to mimic a modeled system, bondgraph elements
and a simple discrete event system.
Fig. 2 shows the previously mentioned .:PSim:. function
libraries with additional VIs for file operations,
conversion among mathematical models such as
differential equation, state-space model, zero-pole-gain
representation, as well as the series, parallel and
feedback connections blocks.

Fig. 2: .:PSim:. Function Libraries

.:PSim:. Compartment

The most recent additions to .:PSim:. are compartment
models that are widely used in pharmacological and
physiological modeling. Although compartment models
are just a special kind of state-space models, it seemed
important to further accentuate the versatility of
LabVIEW to practitioners of other, non-engineering
disciplines.
There are two compartment libraries available.
Compartment model VIs (Fig. 3) are conventional

structures, that are widely used in pharmacokinetics (to
investigate how medicines travel and transform in the
body from intake to exit). These VIs are very easy to
use with just a minimal LabVIEW expertise. Parameters
according to the compartment structure represented in
the given VI can be set, results both in graphical and
numerical format can be studied and stored in files for
further processing.

Fig. 3: .:PSim:.Compartment Model VIs

Fig. 4 illustrates the other library of compartment
blocks. These VIs are general-purpose building blocks,
aiming users with a more advanced LabVIEW
knowledge.

Fig. 4: .:PSim:.Compartment VIs for general-purpose

models

XML model description language

To facilitate data manipulation, an XML-based
compartment description language was developed.
XML stands for Extended Markup Language, and is
widely used to create custom markup languages for
various purposes. XML data files are standard text files
enhanced with the markup tags to group and identify
parts of the data. XML document can be effortlessly
read both by humans and computers, making it possible
to modify the data directly with a simple text editor.
Storing data with comments increase the efficiency of
data processing and retrieval.
Compartment model and simulation parameters are
stored in ComPSim-XML files that are based upon the
XML structure definition (ComPSim-XSD the
corresponding XML Schema Document is shown in Fig.
5).

Fig. 5: ComPSim-XSD XML Schema Document

There is an XML-based general purpose modeling
language under development, based on the above
mentioned compartment description language.

Source Code

So far .:PSim:. has been developed entirely in
LabVIEW that means there are now platform dependent
elements in it. There is not one DLL included, nor is
there a single code interface node (CIN). (CIN calls
code written in a text-based programming language,
such as C, directly from a LabVIEW block diagram).

SIMULATIONS AS LECTURE AIDS

It is not just the author’s experience that most
engineering subjects are taught more straightforwardly
when the lecturer utilizes the fruits of computer
simulation and multimedia. The best possible way to
show dynamical behavior of a technical system would

be to have the system readily at hand in the classroom.
However only a very small minority of real-world
systems can fit in a classroom. That is where photos,
schematics, and even more videos and simulation
programs come up front.
As soon as the dynamic systems behave as in real life
and give the appropriate response to stimuli on-line,
then the style of a lecture is changed revolutionarily.
Instead of presenting the theory in a rather dry fashion,
the background and the inner workings of the system
becomes alive.
Furthermore, simulations can be provided to aid the
students’ work at home, to help them deepen their
understanding of the – for them sometimes really
arcane – processes. In essence they can “play around”
with the process, make experiments without the danger
of making something irreversibly wrong. They harness
the power of simulation to the effect of reducing risks,
time and expenses by operating the system model.

.:PSIM:. APPLICATIONS

The main application area of .:PSim:. is in systems and
control engineering courses at BUTE. One characteristic
example of the very first programs is a simulated
process with a controller (Fig. 6) that groups of 2-3
students have to use to prove their ability to tune
controllers according to certain criteria (stability, speed,
precision). There exist a real-world version of the
illustrated three-tank water-level control loop, so the
simulations’ results could be compared to the process’
actual responses.

Fig. 6: .:PSim:. control engineering course example

Newer additions are .:PSim:. programs used to illustrate
lectures, for example to show the connection between
time and frequency domain, or to introduce and
compare controller-tuning methods. Quite a large
number of sample applications have been (and are
continuously) developed to help students understand the
theories. These samples are open to download from the
department’s web server with the necessary run-time
application, so that they could be utilized without the
LabVIEW development system. One such example aims
to improve students’ skill in sketching approximate
Bode diagrams of transfer elements connected in series
and comparing them to the exact diagram (Fig. 7).

Fig. 7: Sketching an Approximate Bode Diagram

CONCLUSION

.:PSim:. proved many times to be a powerful tool in
education. .:PSim:. simulations have found quite a
number of applications in systems and control
engineering courses at BUTE. For one they serve as
standalone practice assignments to test and enhance
students’ knowledge in the laboratory. They are used as
an illustration prepared to help visualize real world
dynamic processes in lectures. As a hands on tool
.:PSim:. is used to solve simulation tasks that show up
during the lecture. Furthermore students can use
.:PSim:. blocks to build LabVIEW simulation programs
of their own.
It is the nature of every program that its development
never ends, so .:PSim:. stands before further
enhancements, such as the general-purpose XML-based
language mentioned above.

REFERENCES
Bronzino, J.D. (Editor-in-Chief). 1995. The Biomedical

Engineering Handbook. CRC Press
D’Argenio, D.Z., Schumitzky, A. 1997. ADAPT II User’s

Guide: Pharmacokinetic/Pharmacodynamic Systems
Analysis Software. Biomedical Simulations Resource,
Los Angeles

Dorf, R.C., Bishop, R.H. 1998. Modern Control Systems.
Addison Wesley Longman

Kheir, N.A. (editor). 1995. Systems Modeling and Computer
Simulation. Marcel Dekker, Inc.

Wells, L.K.; Travis J. 1997. LabVIEW for EveryOne –
Graphical Programming Made Even Easier. Prentice
Hall

Zeigler, B.P., Praehofer, H., Kim T.G. 2000. Theory of
Modeling and Simulation. Academic Press

AUTHOR BIOGRAPHY

PETRA ARADI received her MSc and
PhD in Mechanical Engineering at BUTE,
in 1994 and 2000 respectively. She also
obtained an MSc in Biomedical
Engineering (BUTE, 2002). Since 1994
she works at the Faculty of Mechanical

Engineering of BUTE, presently as associate professor
in the Department of Informatics.
Her teaching areas are systems and control engineering,
as well as microcontroller applications, PLCs and
Internet programming.
Her research interests cover these teaching areas, with
the recent addition of co-operative mobile robotics.

	c0: Proceedings 16th European Simulation Symposium
György Lipovszki, István Molnár © SCS Press, 2004
ISBN 1-56555-286-5(book) / ISBN 1-84233-106-x(CD)

